

1

What to know about formulae?

- It helps to know (or at least recognise) the formula
- It is extremely important to know what the terms mean.

Antifreeze proteins

- 'non-colligative'
 - MP depression is dependent on 'stuff' in solution
 - FP depression is determined by interactions between proteins and ice crystals
 - Difference between mp and fp = 'thermal hysteresis'

Antifreeze proteins

- Associated with both main cold tolerance strategies
 - Freeze Avoiding
 - Stop ice crystals growing
 - Prevent ice nucleation
 - Freeze tolerant
 - Stop recrystallisation

Which of the following adaptations would you associate with freeze tolerance in insects?

- 1) Carbohydrate cryoprotectants;
- 2) Antifreeze proteins;
- 3) Ice nucleating proteins;4) Low supercooling points.
- 4) LOW Supercooling p
- a) 1, 2 and 3.
- b) 1, 2 and 4.c) 1, 3 and 4.
- d) 2, 3 and 4.
- e) 1, 2, 3 and 4.

Where does the heat come from?

 Heat comes from the normal heat produced by contractile activity of the red muscles

 The only difference is that the heat is retained

Fish breathing air (also goes for diversity of gills)

- Know that there is a diversity of structures involved
 - It might help to know a few of these structures and how they are plumbed into the system