

Costs and Benefits to Territory Size	
Benefits	Costs
benefits and costs generally	y increase with territory size

Cost - Benefit Analysis		
(Janetos, 1980)		
Net Benefits:	NB(s) = B(s) - C(s)	
Set Derivative to 0:	$\frac{dNB(s)}{ds} = 0$	
	$\frac{dNB(s)}{ds} = \frac{dB(s)}{ds} - \frac{dC(s)}{ds} = 0$	
	$\frac{dB(s)}{ds} = \frac{dC(s)}{ds}$	

- Both male and female cichlids defend feeding territories
- 2. Bigger territories have more food, but also attract more competitors
- Males and females will also defend nesting territories such as a rock cavity
 Large cavities can
 - house larger broods

Experimental Design

- Into standard sized aquariums, modified ice cube trays were placed which contained a varying number of "cells".
- 2. Territories included 1, 9, 25, 49, 81 or 121 cells.
- 3. Territories were square, thus the sides were 1, 3, 5, 7, 9 or 11 cells.
- 4. Each aquarium contained a single territory and one large fish (territory owner) and four smaller fish (intruders).

8. Net benefit was measured as growth rate of territory owner (surrogate of fitness)

Results: Net Benefits

Benefit Function: $B(c) = -0.024 \cdot c^2 + 0.44 \cdot c - 1.51$

Cost Function: $C(c) = 0.0064 \cdot c^2$

Maximum Net Benefit:

Derivative of Benefit:

Derivative of Cost:

