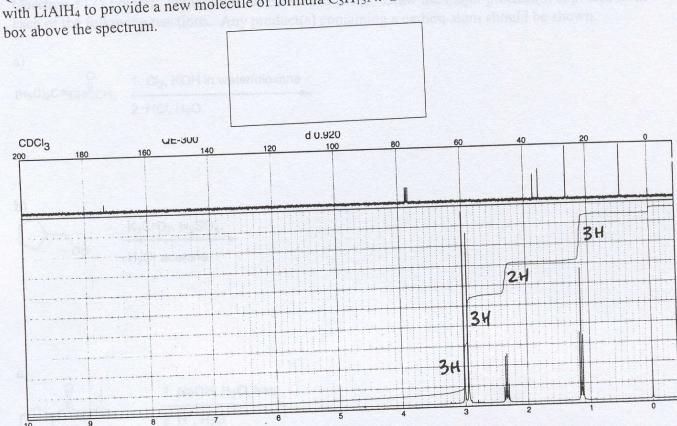

Last Name		First Name
Email: The exam must be written in ink. Y	You have 2 hours to con	mplete the evam
CHEM 610B Exam 2 Spring 2000 Instructor: Dr. Pagenkopf	ou have 2 hours to con	inpicte the exam.
Page	Possible Points	Score
1	10	
2	10	
3	25	
4	20	
5	25	
6	5	
7	20	
8	20	
9	25	
Total	160	
		l l


NAME:		Exam 2/610B/Pagenkopf
Question 1 (10 points). Below is the with two equivalents of ethyl magn structure of molecule A in the box	nesium bromide to give a struct	

Question 1 (10 points). Below is the NMR spectrum of molecule A of formula $C_5H_{10}O_2$ that reacts with two equivalents of ethyl magnesium bromide to give a structure of formula $C_8H_{18}O$. Draw the structure of molecule A in the box above the spectra.

NAME:		Exam 2/610B/Pagenkopf
Question 2. (10 points). Below is twith LiAlH ₄ to provide a new mole box above the spectrum.	-	elle B of formula C ₅ H ₁₁ NO that reacts by the structure of molecule B in the

Question 2. (10 points). Below is the NMR spectrum of a molecule B of formula $C_5H_{11}NO$ that reacts with LiAlH₄ to provide a new molecule of formula $C_5H_{13}N$. Draw the structure of molecule B in the box above the spectrum.

Question 3 (25 points). Preparations of carboxylic acids. Draw the major product(s) expected from each of the following reactions. Any product(s) containing a carbon atom should be shown.

a)
$$(H_3C)_2C = CHCCH_3$$
 1. Cl_2 , KOH in water/dioxane 2. HCl , H_2O

b)
$$OH \qquad \frac{K_2CrO_7, H_2SO_4}{H_2O, \text{ acetone}}$$

c)
$$\frac{1. \text{ NaOH, H}_2\text{O, heat}}{2. \text{ H}^+, \text{H}_2\text{O}}$$

e)
$$H^{\dagger}$$
, H_2O

Question 4 (20 points). Reactions of carboxylic acids and derivatives. Draw the major product(s) expected from each of the following reactions. Any product containing a carbon atom should be indicated.

b) (hint: note lack of H⁺ catalyst)

d)
$$\frac{1. \text{LiAlH}_4}{2. \text{work-up}}$$

Reactions continued (25 points).

$$(B)$$
 (B)
 (B)

i)
$$CH_3$$
 CH_3 CH_3 CH_4 CH_4 CH_3 CH_4 CH_4 CH_4 CH_5 CH_5

clue: $(i-Bu)_2AIH = DIBALH$

Question 5 (5 points). Arrange the following in order of increasing reactivity towards NH₃.

$$A$$
 B C D E

Which number designates the right order?

	В				
2 .	D	C	Α	E	В
3 .	C	D	В	E	A
4 .	Е	В	D	A	C

	6 -		mic numl	ber		PER	IODIC T	ABLE	OF THE	ELEM	ENTS							
	12.011- Groups		mic mas	s	Atomic masses are based on ¹² C. Atomic masses in parentheses are for the most													
	1A				stable isotope.											VIIIA		
Periods	1																	
	H 1.00079	IIA											IIIA	IVA	VA	VIA	VIIA	He 4.00260
	3	4											5	6	7	8	9	10
	Li	Be 9.01218											В	С	N	0	F	Ne
	6.941												10.81	12011			18.998403	
	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
	22.98977	24.305	IIIB	IVB	VB	VIB	VIIB		-VIIIB -	_	IB	IIB	26.98154		 30.97376	_	35.453	39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Ικ̈́	Ca	Sc	Τī	v	Cr	Mn	Fe	Co	Ni	Cu	Ž'n	Ga	Ge	As	Se	Br	Kr
	39.0963	40.08	44.9559	47.90	50.9415	51.996	54.9380	55.847	58.9332	58.70	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1 1	Xe
	85.4678	87.62	88.9059		92.9064	95.94	(98)		102.9055		107.868	112.41	114.82	118.69	121.75	127.60	126.9045	
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs 132,9054	Ba	La 138.9055	* Hf	Та	W	Re	Os 190.2	lr 192,22	Pt	Au 196.9665	Hg	TI 204.37	Pb 207.2	Bi 208.9804	Po (209)	At (210)	Rn (222)
	87	88	89	104	180.9479	183.85 106	186.207	190.2	192.22	195.09	196.9665	200.59	204.37	207.2	208.9804	(209)	(210)	(222)
	Fr (223)	Ra	Ac	Unq	105 Unp	Unh												
	(223)	226.0254	227.0278	(261)	(262)	(203)											'	

Lantha	ınide seı	ries											
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.9077	144.24	(145)	150.4	151.96	157.25	158.9254	162.50	164.9304	167.26	168.9342	173.04	174.967

† Actinid	le series	i											
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0381	231.0359	238.029	237.0482	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Question 6 (20 points). Draw the major product(s) expected from each of the following reactions. Any product containing a carbon atom should be shown.

a)
$$H_{3}C \xrightarrow{C} CI$$

$$H_{2}$$

$$2) \text{ work-up}$$

c)
$$0 = 0 \quad 1.2 \text{ CH}_3\text{Li}$$

$$2. \text{ work up}$$

NAME:	Exam 2/610B/Pagenkopf

Question 7 (20 points). Mechanisms. The preparation of methyl esters by the reaction of carboxylic acids with diazomethane is an important method for it allows the synthesis of methyl esters under extremely mild reaction conditions. Show a detailed mechanism for the following reaction. Be sure to show all formal charges. Draw diazomethane and show resonance structures. Is this reaction reversible (yes or no)?

Question 8 (25 points). Synthesis. Starting with molecule **C**, show how it might be converted into molecule **D** using any reagents you want. Count carbons carefully on this problem.