Email: $\qquad$
The exam must be written in ink. No calculators of any sort allowed.
You have 2 hours to complete the exam.

## CHEM 610B

Exam 1
Spring 2002
Instructor: Dr. Brian Pagenkopf

| Page | Points |
| :---: | :---: |
| 2 | 8 |
| 3 | 9 |
| 5 | 9 |
| 6 | 10 |
| 7 | 12 |
| 8 | 9 |
| $9 \& 10$ | 12 |
| 11 | 6 |
| 12 | 7 |
| 13 | 6 |
| 14 | 6 |
| 15 | 6 |
|  | 100 |

Question 1 (8 points) Miscellaneous NMR questions.
a) In the box below each molecule, indicate how many sets of equivalent hydrogens the molecule has. Each set will give rise to a different resonance signal in the ${ }^{1} \mathrm{H}$ NMR spectra.

b) Predict the splitting of the indicated hydrogens.

d) In the following structures 2 methylene hydrogens are bolded. In which compound would the bolded methylene hydrogens resonate upfield (towards the right of the spectra, smaller ppm). Circle your answer.


2. (9 points) NMR. The IR spectrum of a compound, molecular formula $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$, shows a strong absorption around $1700 \mathrm{~cm}^{-1}$. From this information and the hydrogen and carbon NMR spectra provided below determine the structure.

3. (9 points) NMR. Molecular formula $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$. From this information and the hydrogen and carbon NMR spectra provided below determine the structure.


...continued.


Page 5 of 15
4. (10 points) Nomenclature. Provide a structure for each of the following.
a. 4-bromocyclopentene
b. propylmagnesium bromide
c. 3-methyl-2-pentanone
d. 3-hydroxybutanal
e. 2,2-dimethylcyclohexanecarbaldehyde
(12 points) There are two parts for each of the following questions. For the part a, show the expected products from the reaction. In your answer to part a assume a work-up and show the alcohol products, not the metal alkoxides. For part b of each question, show how the organometallic reagent used in part a can be made from any inorganic reagents you need and an organic molecule containing any combination of the following atoms: carbon, hydrogen, chlorine, bromine, iodine, oxygen or nitrogen.

5a. Show the product from the following reaction
5b. Show how to make the organometallic reagent

ba. Show the product from the following reaction
6 b. Show how to make the organometallic reagent

excess
7. (9 points) Show the expected products from the following reactions. You may assume the reaction is finished with a standard workup if needed.
a.

b.

c.

8. (12 points) Show the expected products from the following reactions. You may assume the reaction is finished with a standard workup if needed.
a.

$+\mathrm{H}_{3} \mathrm{CMgBr}$
b.

c.

d.


*Lanthanide series

| Ce | Pr | Nd | Pm | Sm | Eu | Gd | $\begin{gathered} 65 \\ \mathbf{T b} \end{gathered}$ | Dy | Но | Er | Tm | Yb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 140.12 | 140.90 | 144.24 | (145) | 150.4 | 151.96 | 157.25 | 158 | 162.50 | 64.930 | 167.26 | 2 | 173.04 | 174 |


9. (9 points) Show the expected products from the following reactions.
a.

b.

...continued
c. Draw a resonance structure of the product.

10. (4 points) Propose a synthesis of the following structure starting with a molecule of 6 carbons or less and any inorganic reagents. You may use triphenylphosphine (which contains more than 6 carbons) as a reagent in your synthesis.

(12 points) Each of the following alcohols can be prepared by both of the following reactions:
a) epoxide + organometallic reagent $\rightarrow$ alcohol
b) aldehyde or ketone + an organometallic reagent $\rightarrow$ alcohol

Propose two syntheses for each of the following molecules starting from a) an epoxide and b) a carbonyl compound (aldehyde, ketone, etc.).

11 a and 11 b .


NAME:
...continued
$12 a$ and $12 b$


Page 14 of 15
13. (6 points) Show the expected products from the following reactions. You may assume the reaction is finished with a standard workup if needed.
a.

b.
$\xrightarrow[\text { b) } \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}]{\text { a) } \mathrm{BH}_{3}}$
c.


