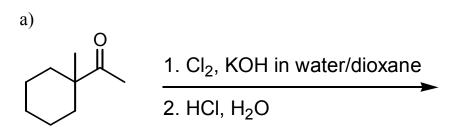
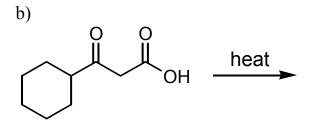
NAME:	
-------	--

Email:


The exam must be written in ink. **No calculators of any sort allowed.** You have 2 hours to complete the exam.


CHEM 610B Exam 3 Spring 2002 Instructor: Dr. Brian Pagenkopf

	Page	Points
	2	6
	3	7
	4	9
	5	8
	6	24
Periodic table	7	0
	8	3
	9	16
	10	4
	11	9
	12	4
	13	4
	14	6
		100

NAME:

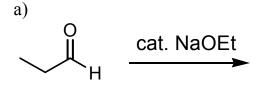
(7 points). Miscellaneous. Show the products expected to be isolated from each of the following reactions.

c) At temperatures lower than required for a Claisen reaction, one product would be expected to form under the following reaction conditions. (It's NOT the Claisen product).

(7 points). NMR.

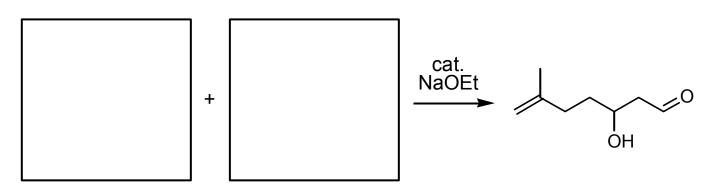
 D^+ , D_2O В Α

a) Assume complete deuterium exchange and draw the structure of **B**.

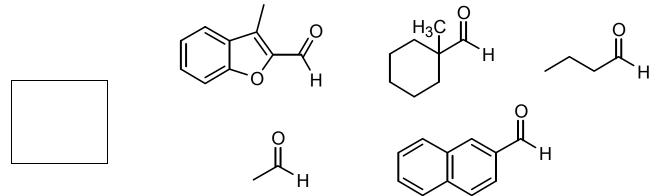

b) How many signals would you expect to see in the ${}^{1}H$ NMR for **A**?

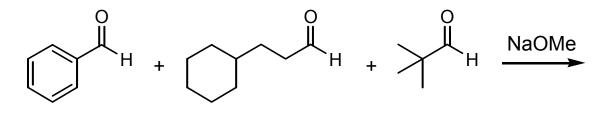


c) After complete deuterium exchange, how many signals would you expect to see in the ${}^{1}H$ NMR of **B**?


Exam 3/610B/Pagenkopf

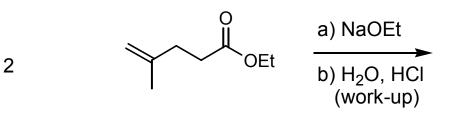
(9 points). Aldol Reactions. Show the products from the following aldol condensations. For each question where more than one product is possible, show all possible aldol condensation products even if expected to be minor. In each question show the β -hydroxy aldehyde(s) or β -hydroxy ketone(s). Do **not** eliminate or dehydrate to the α , β -unsaturated product. Do not show stereochemistry.




(6 points) Aldol Reactions. The following molecule was one of several different structures isolated from an aldol condensation reaction. What were the starting materials?

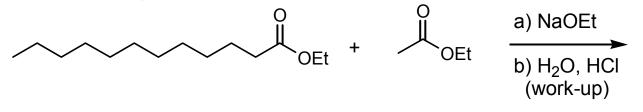
(2 points). How many different aldol condensation products (as β -hydroxy aldehydes) are possible from the following mix of aldehydes, even if expected to be a minor product? Put your answer (a whole number) in the box.

(24 points). Aldol reactions. Show all the possible aldol products (as β -hydroxy carbonyl compounds) from the following reaction mixture:

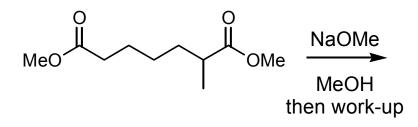

Dehydrate the above products and show the corresponding α , β -unsaturated compounds. (There's additional space on the next page).

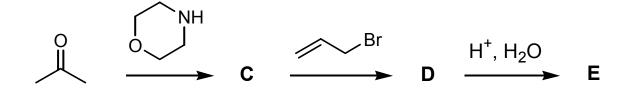
No question this page.

	6 Atomic number PERIODIC TABLE OF THE ELEMENTS																	
	12.011	- ,	mic mas	s		Ate	omic ma	isses ar	e based	on ¹² C	. Atomi	ic						
	Groups					r	masses		ntheses stable is		the mos	t						
Periods	1A 1	1							SLADIE I	solope.								VIIIA
	Ĥ.																	He
	1.00079	IIA	,											IVA	VA	VIA	VIIA	4.00260
	3 Li	4 Be											5 B	° c	7 N	Ő	9 F	10 Ne
	6.941	9.01218											10.81	12011		-	18.998403	-
	11	12	1										13	14	15	16	17	18
	Na	Mg				140			-VIIIB -				AI	Si	P	S	CI	Ar
	22.98977	24.305 20	111B 21	1VB 22	VB 23	VIB 24	VIIB 25	26	27	28	1B 29	11B 30	26.98154	28.0855 32	30.97376 33	32.06 34	35.453 35	39.948 36
	K	Ca	Sc	Ti	V V	Čr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.0963		44.9559	47.90	50.9415		54.9380		58.9332	58.70	63.546	65.38	69.72	72.59	74.9216		79.904	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Мо	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
	85.4678		88.9059	91.22	92.9064	95.94	(98)	101.07	102.9055		107.868	112.41	114.82		121.75		126.9045	
	55 Cs	56 Ba	57 La	72 * Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	132.9054		La 138.9055		180.9479		186.207	190.2	192.22	195.09	196.9665		204.37	207.2	208.9804		(210)	(222)
	87	88	89	104	105	106										(,		
	Fr	Ra		Unq	Unp	Unh											1	
	(223)	226.0254	227.0278	(261)	(262)	(263)											I	
				*Lantha	inide sei	ries												
				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Th	66 Dv	67 Ho	68 Fr	69 Tm	70 Yh	71]


Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.9077	144.24	(145)	150.4	151.96	157.25	158.9254	162.50	164.9304	167.26	168.9342	173.04	174.967
†Actinide series													
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.038	31231.0359	238.029	237.0482	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

(3 points). Claisen and Diekmann Reactions. Draw the major products(s) expected from the following reaction.

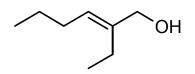

(16 points). Claisen and Diekmann Reactions. Draw the four major products(s) expected from the following reaction.


Exam 3/610B/Pagenkopf

NAME:

(4 points). Claisen and Diekmann Reactions. Draw both products expected from the following Diekmann reaction.

(9 points). The following Stork enamine synthesis was used to make compound E. Show the structure of C, the salt D and product E.


(4 points). The product \mathbf{E} on the preceding page can also be prepared by the acetoacetic ester synthesis. Show all the reagents and steps necessary for its synthesis.

NAME:

(4 points). Show how to synthesize the following compounds using either the malonic ester synthesis or the acetoacetic ester synthesis by providing the necessary reagents and conditions. Show all required steps.

Ο ОМе

(6 points). Synthesis. Propose a synthesis of the following compound using any reagents you like with the only restriction that they can only add four carbons or less to the target molecule.

