NAME:	Final Exam/610B/Pagenkopf

The exam must be written in ink. No calculators of any sort allowed. You have 3 hours to complete the exam.

CHEM 610B; Final Exam; Spring 2002; Instructor: Dr. Brian Pagenkopf

Email:

	Page	Points
	2	10
	3	8
	4	4
	5	9
	6	9
	7	9
	8	9
	9	9
	10	24
Periodic table	11	0
	12	16
	13	14
	14	15
	15	10
	16	10
		156

NAME:	Final Exam/610B/Pagenkopf
(10 points) Nomenclature. Provide a structure for each of the following.	
a. propyl ethanoate	
b. butanoyl chloride	
o. outunoyi emoriae	
c. butylmagnesium bromide	
d. 2,4,6-trinitrotoluene	
e. 4-bromo-1,2-diethylbenzene	

(8 points) Both of the following reactions can be used to prepare the alcohol shown below.

- a) epoxide + organometallic reagent → alcohol
- b) aldehyde or ketone + organometallic reagent → alcohol

Propose two syntheses for the following molecule starting from a) an epoxide and b) an aldehyde or ketone. Don't forget sterics in designing your answer.

(4 points) Draw the most stable (thermodynamic) *acetal* for the following molecule. You may ignore stereochemistry.

(45 points) Show the expected products from the following reactions. You may assume the reaction is finished with a standard workup if needed. Show any product(s) that contains a carbon atom.

d.

e.

f.

g.

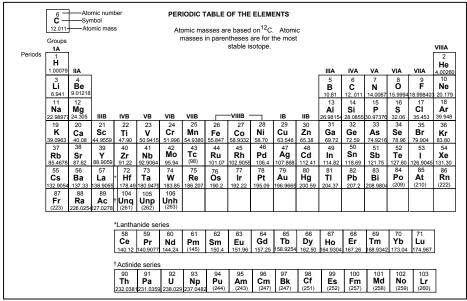
i.
$$H^+$$

j. & k.

+
$$H_2N-NH_2$$
 \longrightarrow \uparrow \uparrow heat

m.

o.


(24 points). Show all the possible aldol products (as β -hydroxy carbonyl compounds) from the following reaction mixture:

Where possible, dehydrate the above products and show the corresponding α,β -unsaturated compounds. (There's additional space on the next page).

NAME: ______

Final Exam/610B/Pagenkopf

No question this page.

Page 11 of 16

(16 points). Draw the four major products expected from the following Claisen reaction.

(6 points). For the following series, a) circle the most acidic phenol, and then b) for the structure you circled, show the most important resonance structure that helps explain the increased acidity. If you write more than one resonance structure, then draw a box around the **one** structure you want graded.

(8 points). An old reagent bottle labeled only "chlorinated benzene" was found in a chemical storage cabinet. Tests showed that the bottle contained a pure compound, and the ¹³C NMR spectrum showed only two peaks. There are several possibilities for the identity of the compound, and given the information provided you can not be sure which one it is (so there are several right answers to this question). Propose **one** structure for what is in the bottle. If you draw more than one structure, then draw a box around the one structure you want graded.

(15 points). Electrophilic aromatic substitution reactions. Draw the major product expected from each of the following reactions. For each nitration reaction, add only one nitro group to the aromatic ring.

a)
$$H_3C \longrightarrow HNO_3, H_2SO_4$$

b)
$$CF_3 \xrightarrow{HNO_3, H_2SO_4}$$

c)
$$OCH_3$$
 HNO_3 , H_2SO_4

(10 points) Synthesis. Show how to convert dimethyl malonate into the product shown.

$$H_3CO$$
 OCH₃ $\stackrel{?}{\longrightarrow}$ OCH₃

NAME:	Final Exam/610B/Pagenkopf
NAME:	Final Exam/610B/Pagenkop

(10 points) Propose a synthesis of the following molecule starting from anything with 6 carbons or less. You may use any reagents you wish provided they add only 6 carbons or less to the final product.