1st Letter of Last Name

NAME:

610B Exam Cover Page

To be eligible for requesting a regrade, the exam must be written in *ink*. **No calculators of any sort allowed.** You have 3 hours to complete the exam.

CHEM 610B, 50995 Exam 1 Fall 2003 Instructor: Dr. Brian Pagenkopf Email:_____

Points
5
6
10
10
5
4
4
9
9
6
9
3
8
8
2
2
100

	6 — C —	Ato Syr	mic numl nbol	ber		PER	юріс т	ABLE	OF THE	ELEMI	ENTS							
	12.011-	Atc	-Atomic mass Atomic masses are based on ¹² C. Atomic															
	Groups		masses in parentheses are for the most															
De sie de	1A		stable isotope.															VIIIA
Periods	1												2					
	1.00079	ПΑ											IIIA	IVA	VA	VIA	VIIA	He
	3	4	1										5	6	7	8	9	10
	Li	Be											В	C	N	Ó	F	Ne
	6.941	9.01218											10.81	12011	14.0067	15.9994	18.998403	20.179
	11 No	12 Ma											13	14	15	16	17 CI	18 A r
	22 98977	24.305	шв	IVB	VB	VIB	VIIB		-VIIIB -	_	IB	IIВ	AI 26.98154	28 0855	30 97376	3 2.06	35 453	39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.0963	40.08	44.9559	47.90	50.9415	51.996	54.9380	55.847	58.9332	58.70	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.80
	37	38	39	40	41	42 Mo	43 To	44 D	45 Dh	46 Dal	47 A a	48	49	50 Sn	51 Ch	52 T o	53	54 Xa
	85.4678	Sr 87.62	¥ 88.9059	2r 91.22	ND 92,9064	95.94	(98)	RU 101.07	R11 102.9055	P0 106.4	A9 107.868	CO 112.41	114.82	118.69	3D 121.75	127.60	126.9045	Xe 131.30
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ва	La	* Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	132.9054	137.33	138.9055	178.49	180.9479	183.85	186.207	190.2	192.22	195.09	196.9665	200.59	204.37	207.2	208.9804	(209)	(210)	(222)
	87 Er	88 D a	89 Ac	104	105	106												
	(223)	ra 226.0254	AC 227.0278	(261)	(262)	(263)												
	*Lanthanide series																	
			i	58	59	60	61	62	63	64	65	66	67	68	69	70	71]
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				140.12	140.9077	144.24	(145)	150.4	151.96	157.25	158.9254	162.50	164.9304	167.26	168.9342	173.04	174.967	
	†Actinide series													-				
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
				1 h 232.0381	Pa 1231 0359	U 238.029	NP 237 0482	Pu (244)	Am (243)	(247)	(247)	(251)	ES (252)	(257)	(258)	(259)	(260)	

Question 1. (2 Points). What has the instructor said is the most important question in Organic Chemistry?

Question 2. Miscellaneous NMR questions.

(3 points) In the box below each molecule, indicate how many sets of equivalent hydrogens the molecule has. Each set will give rise to a different resonance signal in the ¹H NMR spectra.

(4 points) Predict the splitting of the indicated hydrogens (i.e., dt or 2 x 3 for doublet of triplets).

(2 points) For each pair of compounds, in which molecule would the **bolded** hydrogens resonate upfield (towards the right of the spectra, smaller ppm). Circle your answer.

b)

(10 points) NMR. Propose a structural formula based on the following NMR information. Show your work, and account for the observed patterns of splitting.

This page intentionally left blank.

(10 points) NMR. Propose a structural formula based on the following NMR information. Show your work, and account for the observed patterns of splitting.

This page intentionally left blank.

(5 points) Nomenclature. Provide a structure for each of the following.

a. 1-bromocyclopentene

b. butylmagnesium chloride

c. 2-methyl-3-pentanone

d. 4-hydroxyhexanal

e. trans-2,3-dimethylcyclohexanecarbaldehyde

(4 points) There are two parts for each of the following questions. For the part \mathbf{a} , show the expected products from the reaction. In your answer to part \mathbf{a} assume a work-up and show the alcohol products, not the metal alkoxides. For part \mathbf{b} of each question, show how the organometallic reagent used in part \mathbf{a} can be made from any inorganic reagents you need and an organic molecule containing any combination of the following atoms: carbon, hydrogen, chlorine, bromine, iodine, oxygen or nitrogen.

a. Show the product from the following reaction

b. Show how to make the organometallic reagent

MgCl

... continued (4 points).

a. Show the product from the following reactionb. Show how to make the organometallic reagent

(9 points) Show the expected products from the following reactions. You may assume the reaction is finished with a standard workup if needed.

(9 points) Show the expected products from the following reactions.

(3 points) Propose a synthesis of the following structure starting with a molecule of 6 carbons or less and any organic, organometallic or inorganic reagents. You may use triphenylphosphine (which contains more than 6 carbons) as a reagent in your synthesis.

(8 points) Each of the following alcohols can be prepared by both of the following reactions:

a) epoxide + organometallic reagent → alcohol
b) aldehyde or ketone + an organometallic reagent → alcohol

Propose two syntheses for following molecule starting from a) an epoxide and b) a carbonyl compound (aldehyde, ketone, etc.).

... continued (8 points) Propose two syntheses for following molecule starting from a) an epoxide and b) a carbonyl compound (aldehyde, ketone, etc.) and an organometallic reagent.

OH

(4 points) Show the expected products from the following reactions. You may assume the reaction is finished with a standard workup if needed.

