$1^{\text {st }}$ Letter of Last
Name

NAME:

610B Exam Cover Page

To be eligible for a regrade, the exam must be written in ink.
No calculators of any sort allowed.
You have 3 hours to complete the exam.
CHEM 610B, 50995
Exam 2
Fall 2003
Instructor: Dr. Brian Pagenkopf
Email:

Page	Points
3	4
4	5
5	6
6	4
7	6
8	2
9	9
10	9
11	9
12	9
13	9
14	9
15	7
16	2
17	10
	100

Page 2 of 18

Question 1. (4 points) Miscellaneous.
a. (2 points). Rank the following molecules in order of increasing acidity (which is the same as decreasing pKa). Write a 6 in the box for the least acidic, a 1 in the box under the most acidic, and so on.

$\mathrm{H}-\mathrm{Br}$

b. (2 points). Rank the following molecules in order of increasing reactivity toward nucleophilic attack. Write a 5 in the box under the least reactive, a 1 for the most reactive, and so on.

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.9077	144.24	(145)	150.4	151.96	157.25	158.9254	1625	64.9304	167.26	168.9342	173.04	174.967

90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0381	231.0359	238.029	237.0482	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Question 2. (5 points) Nomenclature. Provide a structure for each of the following.
a. 3-ethylhexanoic acid
b. 4-bromo-3-methylpentanoic acid
c. propyl ethanoate

Provide a name for each of the following.
d.

e.

Question 3. (6 points) Acetals and hemi-acetals. Draw all organic product(s) from the following reactions.
a.

b.

Question 4. (4 points) Acetals and hemi-acetals. Compound \mathbf{A} is optically active and is a single enantiomer. Draw the structures for the hemi-acetal and the acetal including all possible stereoisomers.

Question 5. (6 points) Provide the mechanism for the Wolff-Kishner Reduction shown below.

Question 6. (2 points) Provide a detailed mechanism for the following reaction.

Question 7. (45 points) Show the expected products from the following reactions. You may assume the reaction is finished with a standard workup if needed.
a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

1.

$\mathrm{HgCl}_{2}, \mathrm{H}_{2} \mathrm{O}$

m.

Question 8. (9 points) Provide the necessary reagents to effect the following reactions.
a.

b.

c.

Question 9. (7 points) Propose a synthesis of the following molecule starting from anything with 4 carbons or less. The only sources of deuterium you can use are $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{SO}_{4}$.

Question 10. (2 points) The ketone shown below is an optically active single enantiomer, but when stored it gradually becomes racemic. Provide a mechanism to show how racemization occurs.

Question 11. (10 points) NMR. Formula $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{Br}$. Enlargement on next page. This compound is readily soluble in basic water, and the IR spectrum shows a very broad peak around 3100 and a strong peak at about $1700 \mathrm{~cm}^{-1}$.

