C474b Problem Set \#4 (Due Thursday Feb. 15, 2007)

1.) In matrix form a Hamiltonian is the sum: $\widetilde{H}=\widetilde{H}^{(0)}+\widetilde{H}^{(1)}$, where

$$
\widetilde{H}^{(0)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right) ; \widetilde{H}^{(1)}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

and the basis functions used are orthonormal.
a) Use first-order degenerate perturbation theory to calculate the first order corrections to the energies for the first three levels and the "correct" zero ${ }^{\text {th }}$ order eigenstates under the perturbation. Show that the correct eigenstates are orthonormal.
b) Calculate the energy of the fourth level to second order.
2.) Consider a one-dimensional harmonic oscillator with an angular frequency ω_{0} and electric charge q . At $\mathrm{t}=0$ the oscillator is in its ground state. An electric field of strength, E , is applied for a time τ, so the perturbation is
$\hat{H}^{(1)}=-q E x ; 0 \leq \mathrm{t} \leq \tau$. At all other times: $\hat{H}^{(1)}=0$. Here x is the position operator.
a) Using first-order time-dependent perturbation theory, calculate the probability of a transition from $\mid n=0>$ to $\mid n=1>$.
b) Using the results of first-order perturbation time dependent theory, show that a transition from $\mid \mathrm{n}=0>$ to $\mid \mathrm{n}=2>$ is forbidden.

Note: This is a harmonic oscillator problem so it will be easiest to use the raising and lowering operator method to evaluate integrals. See previous problem sets and notes.

