Chemistry 474B 2006-07

Advanced Quantum Chemistry and Spectroscopy

Instructor: Professor Rob Lipson
Office: Rm. 1 Ground Floor, Chemistry Building (knock and come to the inner office door; knock again).
Campus phone extension: x86359
E-mail: rlipson@uwo.ca
Prerequisites: Chemistry 374a
Internet: http://instruct.uwo.ca/chemistry/474b/
Lectures: Tuesdays, Thursdays 11:30 am -12:30 pm in CB115.
Wednesday 10:30 am -11:30 am in CB115
Textbook: None required. All suggested books below will be on short term (3-day) loan in the library

- A popular choice is Atoms and Molecules: An Introduction for Students of Physical Chemistry, M. Karplus and R. N. Porter, W. A. Benjamin, Inc. 1970 (QD461.K33).

Other useful books include:

- Molecular Spectroscopy, I. N. Levine, Wiley Interscience, 1975 (QC454.M6L48)
- Quantum Chemistry $5^{\text {th }}$ Edition, I. N. Levine, Allyn and Bacon, Inc., 2000 (QD462.L47 2000)
- Molecular Quantum Mechanics, P. W. Atkins, Oxford University Press, 1983 (QD462.A84 1983)

Evaluation:

One term test of 2 hour duration. Date to be announced: 35%
Final exam: 50\%
Problem Sets (~ 7 in total) 15 \%.
Course Outline: Details, emphasis and ordering of the material may change as the course proceeds. Specific mathematical notation and tools will be introduced as they are needed. Some of the material is an extension of that encountered in Chem. 374a/b. It is worthwhile to review those notes in the early part of the course. Some of this material will be reviewed in class as needed.
Possible topics to be covered include:
Time-independent non-degenerate perturbation theory, matrix algebra, time-independent degenerate perturbation theory, timedependent perturbation theory, selection rules, angular momentum: the basics, coupled and uncoupled representations, application to spin-orbit coupling in H -atoms, many electron atoms: quantum numbers, terms, Slater determinants, energies including Coulomb and Exchange contributions, Variational theory, Hartree-Fock calculations, the periodic table and periodicity trends, Born-
Oppenheimer approximation, molecular orbitals versus the valence bond method, etc.

Legal Notice

Unless you have either the requisites for this course or written special permission from your Dean to enroll in it, you will be removed from this course and it will be deleted from your record. This decision may not be appealed. You will receive no adjustment to your fees in the event that you are dropped from the course for failing to have the necessary prerequisites.

Table 4.1. Revised 2005 by C.G. Wohl (LBNL). Adapted from the Commission on Atomic Weights and Isotopic Abundanoes, "Atomic Weights of the Elements 1999," Pure and Applied Chemistry 73, 667 (2001), and G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys A729, 337 (2003). The atomic number (top left) is the number of protons in the nucleus. The atomic mass (bottom) is weighted by isotopic abundanoes in the Earth's surface. Atomic masses are relative to the mass of the carbon-12 isotope, defined to be exactly 12 unified atomic mass units (u). Errors range from 1 to 9 in the last digit quoted. Relative isotopic abundanoes often vary considerably, both in natural and commercial samples. A number in parentheses is the mass of the longest-lived isotope of that element-no stable isotope exists However, although Th, Pa, and U have no stable isotopes, they do have characteristic terrestrial compositions, and meaningful weighted masses can be given. For elements 110 and 111 , the numbers of nucleons A of confirmed isotopes are given.

$\begin{gathered} 1 \\ \mid \mathrm{A} \end{gathered}$																	$\begin{gathered} 18 \\ \text { VIIIA } \end{gathered}$
1 H Hydrogen 1.00794	$\begin{gathered} 2 \\ \text { IIA } \end{gathered}$											$\begin{array}{r} 13 \\ \text { IIIA } \\ \hline \end{array}$	$\begin{array}{r} 14 \\ \text { IVA } \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & \text { VA } \end{aligned}$	$\begin{aligned} & 16 \\ & \text { VIA } \end{aligned}$	$\begin{gathered} 17 \\ \text { VIIA } \end{gathered}$	2 He Helium 4.002602 10
$3 \quad \mathrm{Li}$ Lithium 6.941 11	4 Be Bery \#ium 9.012182	PERIODIC TABLE OF THE ELEMENTS										5 Bran 10.811 10	$6 \quad$ C Corbon 12.0107	$7 \quad$ N Nitrogen 14.0067	$\begin{aligned} & 8 \quad 0 \\ & \text { Oxygen } \\ & 15.9994 \end{aligned}$	9 Flucrine 18.9084032	$\begin{gathered} 10 \quad \mathrm{Ne} \\ \text { Neon } \\ 20.1797 \\ \hline \end{gathered}$
$11 \quad \mathrm{Na}$ Sodium 22.989770 19	12 Mg Magnesium 24.3050	$\begin{gathered} 3 \\ \text { IIIB } \end{gathered}$	$\begin{gathered} 4 \\ \text { NB } \end{gathered}$	$\begin{gathered} 5 \\ \text { VB } \end{gathered}$	$\begin{gathered} 6 \\ \text { VIB } \end{gathered}$	$\begin{gathered} 7 \\ \text { VIIB } \end{gathered}$	8	$\stackrel{9}{-}$	$\begin{array}{r} 10 \\ -\quad \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & \mathrm{IB} \end{aligned}$	$\begin{gathered} 12 \\ \text { IIB } \end{gathered}$	$13 \quad \mathrm{Al}$ Aluminum 26.981538	$14 \quad$ Si Silicon 28.0855	$15 \quad$ P Phooph. 30.973761	16 S Sulfur 32.065	17 Cl Chlorine 35.453	$\begin{gathered} 18 \quad \mathrm{Ar} \\ \text { Argon } \\ 39.948 \\ \hline \end{gathered}$
$19 \quad$ K Potassium 39.0983 37	$20 \quad$ Ca Cakium 40.078	21 SC Scandium 44.955010	$22 \quad$ Ti Titanium 47.867 40	$\begin{array}{\|lr\|} \hline 23 & V \\ \text { Vanadium } \\ 50.9415 \\ \hline \end{array}$	$24 r$ Cr Chromium 51.9961	25 Manganese 54.938049	$\begin{array}{\|c\|} \hline 26 \quad \mathrm{Fe} \\ \text { Iron } \\ 55.845 \\ \hline \end{array}$	$27 \quad$ Co Cobalt 58.933200	$28 \quad \mathrm{Ni}$ Nickel 58.6934	29 Cu Copper 63.546	$30 \quad \mathrm{Zn}$ Zine 65.39	$31 \quad G a$ Gallium 69.723	$32 \quad G e$ German. 72.64	$33 \quad$ As Arsenic 74.92160	$34 \quad$ Se Selenium 78.96	$35 \quad \mathrm{Br}$ Bromine 79.904	$36 \quad$ Kr Kryptan 83.80
$37 \quad \mathrm{Rb}$ Rubidium 85.4678 55	38 Sr Strantium 87.62 56	$39 \quad \mathrm{Y}$ Ytrium 88.90585	$40 \quad \mathrm{Zr}$ Zirconium 91.224	41 Nb Nicbium 92.90638	$\begin{gathered} \hline 42 \quad \text { Mo } \\ \text { Molybd. } \\ 95.94 \end{gathered}$	$43 \quad$ Tc Tednnet. (07.907216)	$44 \quad R u$ Ruthen. 101.07 70	$45 \quad$ Rh Rhodium 102.90550	$46 \quad \mathrm{Pd}$ Palladium 106.42	$\begin{array}{cc} \hline 47 \quad \mathrm{Ag} \\ \text { Silver } \\ 107.8682 \\ \hline \end{array}$	$48 \quad$ Cd Cadmium 112.411	$49 \quad$ In Indium 114.818	$\begin{gathered} 50 \quad \text { Sn } \\ \text { Tin } \\ 118.710 \\ \hline \end{gathered}$	51 Sb Antimony 121.760	$52 \quad \mathrm{Te}$ Tellurium 127.60	$\begin{array}{\|l\|} \hline 53 \\ \text { Iodine } \\ 126.90447 \\ \hline \end{array}$	$54 \quad X_{e}$ Xenon 131.293
$55 \quad$ Cs Cesium 132.90645	56 Ba Barium 137.327 	57-71 Lanthanides	$72 \quad \mathrm{Hf}$ Hafnium 178.49	73 Ta Tantalum 180.9479	$74 \quad$ W Tungsten 183.84	75 Rhenium 186.207	$76 \quad$ Os Omium 190.23	$77 \quad$ Ir Iridium 192.217 109	$78 \quad \mathrm{Pt}$ Platinum 195.078	$79 \quad \mathrm{Au}$ Gold 196.96655	$80 \quad \mathrm{Hg}$ Mercury 200.59	$81 \quad$ TI Thallium 204.3833	82 Pb Lead 207.2	$83 \quad \mathrm{Bi}$ Bimuth 208.96038	84 Po Polonium (208.982430)	85 At Astatine (200.987148)	$86 \quad \mathrm{Rn}$ Radan (222.017578)
$87 \quad$ Fr Francium (223.019736)	$\begin{array}{\|cc} 88 & \mathrm{Ra} \\ \text { Radium } \\ (225.025410) \end{array}$	$\begin{array}{\|c\|} \hline 89-103 \\ \text { Actinides } \end{array}$	104 Rf Rutherford (261.10877)	105 Db Dubnium (262.1141)	$\begin{array}{cc} 106 & \mathrm{Sg} \\ \text { Seaborg. } \\ (263.1221) \end{array}$	$\begin{array}{cc} 107 & B h \\ \text { Bohrium } \\ (262.1246) \end{array}$	$\begin{array}{cc} 108 & \mathrm{Hs} \\ \text { Hassium } \\ (277.1408) \end{array}$	$109 \quad \mathrm{Mt}$ Meitner. (268.1387)	$\begin{array}{\|cr\|} \hline 110 & \text { Ds } \\ \text { Darmatadt } \\ {[269,271]} \end{array}$	$\begin{array}{r} 111 \\ {[272]} \end{array}$							

Lanthanide series	$57 \quad$ La Lanthan. 138.9055	$58 \quad \mathrm{Ce}$ Cerium 140.116	59 Praseodym. 140.90765$\|$	$60 \quad$ Nd Neodym. 144.24	$\left\|\begin{array}{cc}61 & \text { Pm } \\ \text { Prometh. } \\ (144.012749)\end{array}\right\|$	$62 \quad \mathrm{Sm}$ Sarnarium 150.36	$63 \quad$ Eu Europium 151.964	$64 \quad$ Gd Gadolin. 157.25	$\begin{array}{\|ll\|} \hline 65 \quad \text { Tb } \\ \text { Terbium } \\ 158.92534 \\ \hline \end{array}$	66 Dyबros. 162.50	67 Ho Holmium 164.93032	$68 \quad \mathrm{Er}$ Erbium 167.259	$69 \quad$ Tm Thulium 168.93421	$70 \quad \mathrm{Yb}$ Ytterbium 173.04	$71 \quad$ Lu Lutetium 174.967
Actinide series	$89 \quad A C$ Actinium (227.027752)	90 Th Thorium 232.038055	91 Pa Protactin. 231.035884 $\|$	92 U Uranium 238.02891	$\left\|\begin{array}{lr}93 & N p \\ \text { Neptunium } \\ (237.048173)\end{array}\right\|$	$\left[\begin{array}{lr}94 & \mathrm{Pu} \\ \text { Plutonium } \\ (244.064204)\end{array}\right.$	$\begin{array}{\|c\|} \hline 95 \quad \text { Am } \\ \text { Americ. } \\ (243.051381) \end{array}$	$\begin{array}{cc} 96 \quad \mathrm{Cm} \\ \text { Curium } \\ (247.070354) \end{array}$	$97 \quad \mathrm{Bk}$ Berkelium (247.070307)	$\begin{array}{cc} 98 & \text { Cf } \\ \text { Califarn. } \\ (251.07 c 587) \end{array}$	$99 \quad$ Es Einstein. (252.08208)	$\begin{array}{cc} 100 & \text { Fm } \\ \text { Fermium } \\ (257.005105) \end{array}$	$\left(\begin{array}{cc} 101 & \text { Md } \\ \text { Mendelev. } \\ (258.098431) \end{array}\right.$	$\begin{array}{\|lr\|} \hline 102 \quad \text { No } \\ \text { Nobelium } \\ (259.1010) \end{array}$	$\begin{array}{ll} 103 & \text { Lr } \\ \text { Lawrenc. } \\ (262.1096) \end{array}$

1. PHYSICAL CONSTANTS

Table 1.1. Reviewed 2004 by P.J. Mohr and B.N. Taylor (NIST). Based mainly on the "CODATA Recommended Values of the Fundamental Physical Constants: $2002^{\prime \prime}$ by P.J. Mohr and B.N. Taylor, to be published in 2004. The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1 -standard-deviation uncertainties in the last digits; the corresponding fractional uncertainties in parts per $10^{9}(\mathrm{ppb})$ are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 2002 CODATA set of constants may be found at http://physics .nist.gov/constants

[^0]At $Q^{2}=0$. At $Q^{2} \approx m_{W}^{2}$ the value is $\sim 1 / 128$.
F Absolute lab measurements of G_{N} have been made only on scales of about 1 cm to 1 m .

* See the discussion in Sec. 10, "Electroweak model and constraints on new physics."

If The corresponding $\sin ^{2} \theta$ for the effective angle is $0.23149(15)$.

3. INTERNATIONAL SYSTEM OF UNITS (SI)

See "The International System of Units (SI)," NIST Special Publication 330, B.N. Taylor, ed. (USGPO, Washington, DC, 1991); and "Guide for the Use of the International System of Units (SI)," NIST Special Publication 811, 1995 edition, B.N. Taylor (USGPO, Washington, DC, 1995).

SI prefixes		
10^{24}	yotta	(Y)
10^{21}	zetta	(Z)
10^{18}	exa	(E)
10^{15}	peta	(P)
10^{12}	tera	(T)
10^{9}	giga	(G)
10^{6}	mega	(M)
10^{3}	kilo	(k)
10^{2}	hecto	(h)
10	deca	(da)
10^{-1}	deci	(d)
10^{-2}	centi	(c)
10^{-3}	milli	(m)
10^{-6}	micro	(μ)
10^{-9}	nano	(n)
10^{-12}	pico	(p)
10^{-15}	femto	(f)
10^{-18}	atto	(a)
10^{-21}	zepto	(z)
10^{-24}	yocto	(y)

Physical quantity	Name of unit	Symbol
Base units		
length mass time electric current thermodynamic temperature amount of substance luminous intensity	meter kilogram second ampere kelvin mole candela	$\begin{gathered} \mathrm{m} \\ \mathrm{~kg} \\ \mathrm{~s} \\ \mathrm{~A} \\ \mathrm{~K} \\ \\ \mathrm{~mol} \\ \mathrm{~cd} \end{gathered}$
Derived units with special names		
plane angle solid angle frequency energy force pressure power electric charge electric potential electric resistance electric conductance electric capacitance magnetic flux inductance magnetic flux density luminous flux illuminance celsius temperature activity (of a radioactive source)* absorbed dose (of ionizing radiation)* dose equivalent*	radian steradian hertz joule newton pascal watt coulomb volt ohm siemens farad weber henry tesla lumen lux degree celsius becquerel gray sievert	$\begin{gathered} \hline \text { rad } \\ \text { sr } \\ \mathrm{Hz} \\ \mathrm{~J} \\ \mathrm{~N} \\ \mathrm{~Pa} \\ \mathrm{~W} \\ \mathrm{C} \\ \mathrm{~V} \\ \Omega \\ \mathrm{~S} \\ \mathrm{~F} \\ \mathrm{~Wb} \\ \mathrm{H} \\ \mathrm{~T} \\ \mathrm{~lm} \\ \mathrm{~lx} \\ { }^{\circ} \mathrm{C} \\ \mathrm{~Bq} \\ \\ \mathrm{~Gy} \\ \\ \mathrm{~Sv} \end{gathered}$

1.1: Introductory Concepts

- Review of quantum mechanical postulates
- Consider a system of a single moving particle

Postulate I: The system can be described by a wave function or state function

$$
\Psi(x, y, z, t)
$$

which is bounded, single-valued, continuous, with continuous partial derivatives

$$
\frac{\partial \Psi}{\partial x}
$$

Postulate IV: The wave function must obey the Schrödinger Time-Dependent Wave Equation:

$$
\hat{H} \Psi=-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}
$$

If the particle is bound; that is, exists somewhere in space:

$$
\iiint \Psi^{*}(x, y, z, t) \Psi(x, y, z, t) d x d y d z=C=\int \Psi^{*} \Psi d \tau
$$

C is a real constant.

Therefore, can normalize the wave function. Multiply by a real or imaginary constant N such that:

$$
\begin{aligned}
& \Phi=N \Psi \text { so that } \int \Phi^{*} \Phi d \tau=1 \\
& \int \Phi^{*} \Phi d \tau=\int(N \Psi)^{*}(N \Psi) d \tau=N^{*} N \int \Psi^{*} \Psi d \tau \\
& =N^{*} N C=1 \Rightarrow N^{*} N=\frac{1}{C} \text { or } N=\frac{1}{\sqrt{C}} e^{i \delta}
\end{aligned}
$$

$e^{i \delta}$ is an arbitrary phase factor. Can choose $\delta=0$
-If particle is unbound, not localized (e.g. beam problems in C374a)

$$
\therefore \int \Psi^{*} \Psi d \tau=\infty
$$

Postulate II: $\quad \Psi^{*} \Psi=|\Psi(\vec{r}, t)|^{2} \quad$ is the Probability Distribution

$$
\begin{array}{ll}
& (a+i b)^{*}(a+i b) \\
\text { Recall: } \quad & =(a-i b)(a+i b) \\
& =a^{2}-a i b+a i b-(i b)^{2} \quad \text { A real number } \\
& =a^{2}+b^{2}
\end{array}
$$

Max Born)
$|\Psi(x, y, z, t)|^{2} \mathrm{dxdydz} \quad$ is the probability that the particle can be found between x and $\mathrm{x}+\mathrm{dx}$, y and $\mathrm{y}+\mathrm{dy}$, and z and $\mathrm{z}+\mathrm{dz}$, at time $=\mathrm{t}$
$\int \Psi^{*} \Psi d \tau=1 \quad \begin{aligned} & \text { means there is a } 100 \% \text { probability of finding the particle } \\ & \text { somewhere at time }=\mathrm{t} .\end{aligned}$

Postulate V: Any real physical observable parameter of the system, M, is calculated as:

$$
\bar{M}=\langle M\rangle=\frac{\int \Psi^{*} \hat{M} \Psi d \tau}{\int \Psi^{*} \Psi d \tau}=\int \Psi^{*} \hat{M} \Psi d \tau
$$

\bar{M}
$=$ expectation or average value $=$ value one would observe if a large number of measurements of M were made and averaged while in Ψ.

Postulate III: $\hat{M} \quad$ is the quantum mechanical operator generated according to the following rules:

classical	quantum
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}, \vec{r}$	$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}, \quad \vec{r}$
$\vec{p}=\hat{i} p_{x}+\hat{j} p_{y}+\hat{k} p_{z}$	$\hat{p}=\hat{i} \frac{\hbar}{i} \frac{\partial}{\partial x}+\hat{j} \frac{\hbar}{i} \frac{\partial}{\partial y}+\hat{k} \frac{\hbar}{i} \frac{\partial}{\partial z}$

$$
M\left(x, y, z, t, p_{x}, p_{y}, p_{z}\right) \rightarrow \hat{M}\left(x, y, z, t, \hat{p}_{x}, \hat{p}_{y}, \hat{p}_{z}\right)
$$

Thus:

$$
H=T+V \rightarrow \hat{H}=\hat{T}+\hat{V}
$$

Assume $\quad \hat{V}$ is a function of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$ only. Therefore $\quad \hat{V}=V$
Know $\quad T=\frac{1}{2 m} \vec{p} \cdot \vec{p} \Rightarrow \hat{T}=\frac{1}{2 m} \hat{\vec{p}} \cdot \hat{\vec{p}}=\frac{1}{2 m}\left(\frac{\hbar}{i} \vec{\nabla}\right) \cdot\left(\frac{\hbar}{i} \vec{\nabla}\right)=-\frac{\hbar^{2}}{2 m} \nabla^{2}$
(as earlier)

Postulate IV: It is possible for the operator to regenerate the wave function within a constant; that is:

$$
\hat{M} \Psi=m \Psi
$$

Here $\boldsymbol{\Psi}$ is an eigenfunction ("self" function) and m is the eigenvalue of the operator

This means that the expectation value is precisely determined.

$$
\bar{M}=\frac{\int \Psi^{*} \hat{M} \Psi d \tau}{\int \Psi^{*} \Psi d \tau}=\frac{\int \Psi^{*} m \Psi d \tau}{\int \Psi^{*} \Psi d \tau}=m \frac{\int \Psi^{*} \Psi d \tau}{\int \Psi^{*} \Psi d \tau}=m
$$

Procedure

A: Solve the Schrödinger Equation to get a set of wave functions Ψ_{k}, which also provides a set of quantum numbers, k
(e.g.: H -atom \rightarrow polynomials $\mathrm{R}_{\mathrm{n}, \mathrm{l}} \mathrm{Y}_{1}^{\mathrm{m}}$ with three sets of quantum numbers: $\mathrm{n}, \mathrm{l}, \mathrm{m}$

The set of wave functions describe all the possible states of the system $=$ state functions

B: Use the wave functions to calculate expectation values for a particular state of interest; for example, the energy E.

[^0]: The meter is the length of the path traveled by light in vacuum during a time interval of $1 / 299792458$ of a second.

