Set up the problem again

$$\begin{split} \hat{H}\psi_{q} &= E_{q}\psi_{q} \\ \hat{H} &= \hat{H}^{(0)} + \lambda \hat{H}^{(1)} \\ E_{q} &= E_{q}^{(0)} + \lambda E_{q}^{(1)} + \lambda^{2} E_{q}^{(2)} + \dots \\ \psi_{q} &= \phi_{q}^{(0)} + \lambda \psi_{q}^{(1)} + \dots \end{split}$$

But, there are some g-fold degenerate states such that

$$E_{q,1}^{(0)} = E_{q,2}^{(0)} = \dots = E_{q,g}^{(0)} = E_q^{(0)}$$
and $\psi_{q,j}^{(0)} = \phi_{q,j}^{(0)} + \lambda \psi_{q,j}^{(1)} + \lambda^2 \psi_{q,j}^{(2)} + \dots$
with $\phi_{q,j}^{(0)} = \sum_{j=1}^g c_j \psi_{q,j}^{(0)}$

Choose these to be Schmidt orthogonalized although they not be Since we are always examining state q, drop this index

$$\Rightarrow \hat{H}\psi_{q,j} = E_{q,j}\psi_{q,j} \Leftrightarrow \hat{H}\psi_j = E_j\psi_j \quad 1 \leq j \leq g$$

 $E_q^{(0)}$ = energy of the unperturbed degenerate state

$$\therefore E_{j} = E_{q}^{(0)} + \lambda E_{j}^{(1)} + \lambda^{2} E_{j}^{(2)} + \dots
\psi_{j} = \phi_{j}^{(0)} + \lambda \psi_{j}^{(1)} + \lambda^{2} \psi_{j}^{(2)} + \dots
\phi_{j}^{(0)} = \sum_{j=1}^{g} c_{j} \psi_{j}^{(0)}$$

Derivation ahead

Substitute into the eigenvalue problem:

$$\hat{H}\psi_{j} = E_{j}\psi_{j}$$

$$\Rightarrow \left(\hat{H}^{(0)} + \lambda\hat{H}^{(1)}\right)\left(\phi_{j}^{(0)} + \lambda\psi_{j}^{(1)} + \ldots\right) = \left(E_{q}^{(0)} + \lambda E_{j}^{(1)} + \lambda^{2}E_{j}^{(2)} + \ldots\right)\left(\phi_{j}^{(0)} + \lambda\psi_{j}^{(1)} + \ldots\right)$$

Collect term in λ^n :

Consider equation (1):

$$\phi_{j}^{(0)} = \sum_{j=1}^{g} c_{j} \psi_{j}^{(0)} \Longrightarrow \left(\hat{H}^{(0)} - E_{q}^{(0)} \right) \left(\sum_{j=1}^{g} c_{j} \psi_{j}^{(0)} \right) = 0$$

as demanded by superposition principle. Not new!

Consider equation (2):

Use
$$\phi_j^{(0)} = \sum_{j=1}^g c_j \psi_j^{(0)}$$
 Note: $\mathbf{c_j}$ values still unknown

and
$$\psi_j^{(1)} = \sum_{k=1}^{\infty} a_k \psi_k^{(0)}$$

 $\psi_j^{(1)} = \sum_{k=0}^{\infty} a_k \psi_k^{(0)}$ As for non-degenerate perturbation theory. $\mathbf{a_k}$ values still need to be determined.

$$\Rightarrow$$
 (2) \equiv

$$\left(\hat{H}^{(0)} - E_q^{(0)}\right) \sum_{k=1}^{\infty} a_k \psi_k^{(0)} = \left(\hat{H}^{(1)} - E_j^{(1)}\right) \sum_{j=1}^{g} c_j \psi_j^{(0)}$$

Sum over **all** states

Sum over all degenerate states

$$\Rightarrow \sum_{k=1}^{\infty} a_k \Big(E_k^{(0)} - E_q^{(0)} \Big) \psi_k^{(0)} = \sum_{j=1}^{g} c_j \Big(\hat{H}^{(1)} - E_j^{(1)} \Big) \psi_j^{(0)}$$

Multiply by $\Phi_q^{(0)*}$ and integrate. Remember q is the state for which we want to solve the problem.

$$\therefore \sum_{k=1}^{\infty} a_k \left(E_k^{(0)} - E_q^{(0)} \right) \left\langle \phi_q^{(0)} \mid \psi_k^{(0)} \right\rangle = \sum_{j=1}^{g} c_j \left[\left\langle \phi_q^{(0)} \mid \hat{H}^{(1)} \mid \psi_j^{(0)} \right\rangle - E_j^{(1)} \left\langle \phi_q^{(0)} \mid \psi_j^{(0)} \right\rangle \right]$$

Case I: q is a non-degenerate state \rightarrow j = q and g = 1

As before $a_q = 0$ and $\langle \Phi_q^{(0)} | \Psi_k^{(0)} \rangle = 0$ for $q \neq k$

Therefore the LHS = 0 and
$$E_q^{(1)} = \left\langle \phi_q^{(0)} \mid \hat{H}^{(1)} \mid \phi_q^{(0)} \right\rangle = H_{qq}^{(1)}; \ and \ \phi_q^{(0)} = \psi_q^{(0)}$$

Case II: q is a g-fold degenerate state.

Write LHS as two terms:

$$\sum_{k=q_1}^{q_g} a_k \left(E_k^{(0)} - E_q^{(0)} \right) \left\langle \phi_q^{(0)} \mid \psi_k^{(0)} \right\rangle + \sum_{k \neq q_1, \dots, q_g}^{\infty} a_k \left(E_k^{(0)} - E_q^{(0)} \right) \left\langle \phi_q^{(0)} \mid \psi_k^{(0)} \right\rangle$$

$$\sum_{k=q_1}^{q_g} a_k \left(E_k^{(0)} - E_q^{(0)} \right) \left\langle \phi_q^{(0)} \mid \psi_k^{(0)} \right\rangle + \sum_{k \neq q_1, \dots, q_g}^{\infty} a_k \left(E_k^{(0)} - E_q^{(0)} \right) \left\langle \phi_q^{(0)} \mid \psi_k^{(0)} \right\rangle$$

Sum over all degenerate levels within q^{th} state $\rightarrow E_k^{(0)} = E_q^{(0)}$ always \rightarrow sum = 0

Sum over all other states $(k \neq q_j)$. Here k and q are orthogonal $\rightarrow <\Phi_q^{(0)} \mid \Psi_k^{(0)}>=0 \rightarrow sum=0$.

In all cases LHS =0. Therefore, in general:

$$\sum_{j=1}^{g} c_{j} \left[\left\langle \phi_{q}^{(0)} \mid \hat{H}^{(1)} \mid \psi_{j}^{(0)} \right\rangle - E_{j}^{(1)} \left\langle \phi_{q}^{(0)} \mid \psi_{j}^{(0)} \right\rangle \right] = 0$$

Note: this looks like the non-degenerate case, but there are g Φ s which if they Schmidt orthogonalized $\to \langle \Phi_q^{(0)} | \Phi_j^{(0)} \rangle = \delta_{qj}$

Use earlier definition:

$$\hat{H}_{qj}^{(1)} = \left\langle \phi_q^{(0)} \mid \hat{H}^{(1)} \mid \psi_j^{(0)} \right\rangle$$

Introduce "Overlap Integral": $S_{qj} = <\phi_q^{(0)} \mid \psi_j^{(0)}>$

$$\Rightarrow \sum_{j=1}^{g} c_{j} \left[H_{qj}^{(1)} - E_{j}^{(1)} S_{qj} \right] = 0$$

This represents g equations in g unknowns: $\{c_1, c_2, ..., c_g\}$ with coefficients $H_{qj}^{(1)} - E_j^{(1)} S_{qj}$

Need to solve for each 1.) $E_j^{(1)}$, and then 2.) for c_j where $\phi_j^{(0)} = \sum_{j=1}^g c_j \psi_j^{(0)}$ Key steps to solve this.

1.) Make certain that the original wave functions $\Phi_j^{(0)}$ are orthonormal for all degenerate states. $\to S_{qj} = \delta_{qj}$

This reduces equations to:

$$\sum_{j=1}^{g} c_{j} \left[H_{qj}^{(1)} - E_{j}^{(1)} \delta_{qj} \right] = 0 \qquad 1 \le q \le g ; 1 \le j \le g$$

- 2.) For the set of equations to have a non-trivial solution $(c_j \neq 0)$, the determinant of the coefficients must vanish.
- 1.) Write out equations in detail.

$$\Rightarrow \sum_{j=1}^{g} c_{j} \left[H_{qj}^{(1)} - E_{j}^{(1)} \delta_{qj} \right] = 0 \qquad q = 1, 2, ..., g$$

$$\begin{split} q &= 1: \left(H_{11}^{(1)} - E_{1}^{(1)}\right) c_{1} + H_{12}^{(1)} c_{2} + H_{13}^{(1)} c_{3} + \ldots + H_{1g}^{(1)} c_{g} = 0 \\ q &= 2: H_{21}^{(1)} c_{1} + \left(H_{22}^{(1)} - E_{2}^{(1)}\right) c_{2} + H_{23}^{(1)} c_{3} + \ldots + H_{2g}^{(1)} c_{g} = 0 \end{split}$$

•

•

•

$$q = g: H_{g1}^{(1)}c_1 + H_{g2}^{(1)}c_2 + H_{g3}^{(1)}c_3 + \dots + \left(H_{gg}^{(1)} - E_g^{(1)}\right)c_g = 0$$

The determinant of the coefficients is:

$$\begin{vmatrix} \left(H_{11}^{(1)} - E_{1}^{(1)}\right) & H_{12}^{(1)} & H_{13}^{(1)} & \cdots & H_{1g}^{(1)} \\ H_{21}^{(1)} & \left(H_{22}^{(1)} - E_{2}^{(1)}\right) & H_{23}^{(1)} & \cdots & H_{2g}^{(1)} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ H_{g1}^{(1)} & H_{g2}^{(1)} & H_{g3}^{(1)} & \dots & \left(H_{gg}^{(1)} - E_{g}^{(1)}\right) \end{vmatrix}$$

- 2.) Can solve this equation (a polynomial in $E_j^{(1)}$) to get $E_1^{(1)}$, $E_2^{(1)}$, ... $E_g^{(1)}$ since the matrix elements $H_{ii}^{(1)}$'s are known= numbers obtained by doing integrations
- 3.) For each root $E_j^{(1)}$, j = 1, 2, ..., g, there will be a different set of coefficients $\{c_j\}$ giving a different correct zeroth order wave function.

4.) Determine the coefficients a_k such that we get:

$$\psi_j^{(1)} = \sum_{k=1}^{\infty} a_k \psi_k^{(0)}$$

and thus:

$$\psi_{j} = \phi_{j}^{(0)} + \psi_{j}^{(1)} + \psi_{j}^{(2)} + \dots$$

$$= \sum_{j=1}^{g} c_{j} \psi_{j}^{(0)} + \sum_{\substack{k=1\\k \neq j}}^{\infty} a_{k} \psi_{k}^{(0)} + \dots$$

5.) Determine 2nd order energy correction as before using correct 0th order wave functions.

Procedure requires:

- 1.) Schmidt orthogonalization procedure
- 2.) matrix algebra where matrix elements $H_{ij}^{(1)} = \langle \Psi_i | \mathbf{H}^{(1)} | \Psi_j \rangle$
- 3.) patience

Example: Given the following Hamiltonian matrix:

$$\hat{H} = \hat{H}^{(0)} + \hat{H}^{(1)} = \begin{pmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 30 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$$

Determine the eigenvalues correct to second order

Answer: First note that $|\Psi_1^{(0)}\rangle$ and $|\Psi_2^{(0)}\rangle$ are degenerate but $|\Psi_3^{(0)}\rangle$ is not part of the degeneracy

$$\therefore E_3^{(1)} = 0$$
 This is read right off $\mathbf{H}^{(1)}$

To find the correct first order corrections to the energy for the degenerate set one must solve the following secular determinant:

$$\begin{vmatrix} H_{11}^{(1)} - E^{(1)} & H_{12}^{(1)} \\ H_{21}^{(1)} & H_{22}^{(1)} - E^{(1)} \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} -E^{(1)} & 1\\ 1 & -E^{(1)} \end{vmatrix} = 0 \Rightarrow (E^{(1)})^2 - 1 = 0$$

$$\Rightarrow E^{(1)} = \pm 1$$

To find the correct first order wave functions for the degenerate levels, substitute (one by one) each $E^{(1)}$ in the secular determinant.

$$\underline{\mathbf{E}^{(1)}=1:} \quad \Rightarrow \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow c_2 = c_1 \Rightarrow \widetilde{c} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Normalize:
$$\tilde{c}^+\tilde{c} = 1 \Rightarrow 2c_1^2 = 1 \Rightarrow c_1 = \frac{1}{\sqrt{2}}$$

$$\therefore \phi_1^{(0)} = \frac{1}{\sqrt{2}} \left(\psi_1^{(0)} + \psi_2^{(0)} \right)$$

Similarly for $E^{(1)}=-1$:

$$\Rightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow c_2 = -c_1 \Rightarrow \widetilde{c} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Normalize: $\tilde{c}^+\tilde{c} = 1 \Rightarrow 2c_1^2 = 1 \Rightarrow c_1 = \frac{1}{\sqrt{2}}$

$$\therefore \phi_2^{(0)} = \frac{1}{\sqrt{2}} \left(\psi_1^{(0)} - \psi_2^{(0)} \right)$$

These are the wave functions which must be used to calculate $E_q^{(2)}!$