$$\Rightarrow \sum_{k=1}^{\infty} a_{k}(t) E_{k}^{(0)} \phi_{k} + \sum_{k=1}^{\infty} a_{k}(t) \hat{H}^{(1)}(t) \phi_{k} = -\frac{\hbar}{i} \sum_{k=1}^{\infty} \begin{bmatrix} \cdot a_{k} \phi_{k} + a_{k} \frac{\partial \left(\psi_{k} e^{-\frac{iE_{k}^{(0)} t}{\hbar}}\right)}{\partial t} \\ a_{k} \phi_{k} + a_{k} \frac{\partial \left(\psi_{k} e^{-\frac{iE_{k}^{(0)} t}{\hbar}}\right)}{\partial t} \end{bmatrix}$$

$$\Rightarrow \sum_{k=1}^{\infty} a_{k} E_{k}^{(0)} \phi_{k} + \sum_{k=1}^{\infty} a_{k} \hat{H}^{(1)} \phi_{k} = -\frac{\hbar}{i} \sum_{k=1}^{\infty} \begin{bmatrix} \cdot a_{k} \psi_{k} e^{-\frac{iE_{k}^{(0)} t}{\hbar}} - \frac{i}{\hbar} E_{k}^{(0)} a_{k} \phi_{k} \end{bmatrix}$$

$$\Rightarrow \sum_{k=1}^{\infty} a_{k}(t) \hat{H}^{(1)}(t) \psi_{k} e^{-\frac{iE_{k}^{(0)} t}{\hbar}} = -\frac{\hbar}{i} \sum_{k=1}^{\infty} a_{k}(t) \psi_{k} e^{-\frac{iE_{k}^{(0)} t}{\hbar}}$$

Multiply by Ψ_q^* and integrate. Will recognize "q" as an empty state to fill by a transition.

$$\sum_{k=1}^{\infty} a_{k}(t) \langle \psi_{q} | \hat{H}^{(1)} | \psi_{k} \rangle e^{-\frac{iE_{k}^{(0)}t}{\hbar}} = -\frac{\hbar}{i} \sum_{k=1}^{\infty} a_{k}(t) \langle \psi_{q} | \psi_{k} \rangle e^{-\frac{iE_{k}^{(0)}t}{\hbar}} = -\frac{\hbar}{i} a_{q}(t) e^{-\frac{iE_{q}^{(0)}t}{\hbar}}$$
Rearrange for $a_{q}(t)$

$$\dot{a}_{q}(t) = \frac{\partial a_{q}(t)}{\partial t} = -\frac{i}{\hbar} \sum_{k=1}^{\infty} a_{k}(t) H_{qk}^{(1)} e^{-\frac{i(E_{k}^{(0)} - E_{q}^{(0)})t}{\hbar}}$$

= **EXACT** result

= a set of **totally coupled** first order linear differential equations which, in principle, could be solved; for example, by Laplace Transform techniques

However, we can **decouple** the equations by writing each coefficient as a perturbation expansion:

$$a_q(t) = a_q^{(0)}(t) + a_q^{(1)}(t) + a_q^{(2)}(t) + \dots$$

Now substitute and regroup according to order of the perturbation:

$$\begin{pmatrix}
\bullet^{(0)} & \bullet^{(1)} \\
a_q(t) + a_q(t) + a_q(t) + a_q(t) + \dots \end{pmatrix} = -\frac{i}{\hbar} \sum_{k=1}^{\infty} (a_k^{(0)}(t) + a_k^{(1)}(t) + a_k^{(2)}(t) + \dots) H_{qk}^{(1)}(t) e^{\frac{-i(E_k^{(0)} - E_q^{(0)})t}{\hbar}}$$

zeroth order
$$a_{k} (t) = 0$$

first order $a_{k} (t) = -\frac{i}{\hbar} \sum_{k=1}^{\infty} a_{k}^{(0)}(t) H_{qk}^{(1)}(t) e^{-\frac{i(E_{k}^{(0)} - E_{q}^{(0)})t}{\hbar}}$

second order $a_{k} (t) = -\frac{i}{\hbar} \sum_{k=1}^{\infty} a_{k}^{(1)}(t) H_{qk}^{(1)}(t) e^{-\frac{i(E_{k}^{(0)} - E_{q}^{(0)})t}{\hbar}}$

etc.

Successive solution: find zeroth order solution; substitute into first order equation; find first-order solution; substitute into second order equation, and so on.

Note:
$$a_q(t=0) = \delta_{qj} \Rightarrow a_q(t=0) = 0$$
 :: $a_q^{(n)}(t=0) = const \delta_{qj}$

Zeroth order solution

$$\begin{array}{l}
a_{q}^{(0)}(t) = 0 \Rightarrow a_{q}^{(0)}(t) - a_{q}^{(0)}(0) = 0 \\
\Rightarrow a_{q}^{(0)}(t) = a_{q}^{(0)}(0) = \delta_{qj}
\end{array}$$

First order solution

$$\begin{array}{l}
\bullet^{(1)} \\
a_q(t) = -\frac{i}{\hbar} \sum_{k=1}^{\infty} a_k^{(0)}(t) H_{qk}^{(1)}(t) e^{-\frac{i(E_k^{(0)} - E_q^{(0)})t}{\hbar}} \\
= -\frac{i}{\hbar} \sum_{k=1}^{\infty} \delta_{kj}(t) H_{qk}^{(1)}(t) e^{-\frac{i(E_k^{(0)} - E_q^{(0)})t}{\hbar}}
\end{array}$$

$$\Rightarrow a_{q}^{(1)} = -\frac{i}{\hbar} H_{qj}^{(1)}(t) e^{-\frac{i(E_{j}^{(0)} - E_{q}^{(0)})t}{\hbar}} \qquad (q \neq j)$$

$$\Rightarrow a_{q}^{(1)}(t) - a_{q}^{(1)}(0) = -\frac{i}{\hbar} \int_{0}^{t} H_{qj}^{(1)}(t) e^{-\frac{i(E_{j}^{(0)} - E_{q}^{(0)})t}{\hbar}} dt$$

Remember $a_q^{(1)}(0)=0$ since $q \neq j$

$$\therefore a_q^{(1)}(t) = -\frac{i}{\hbar} \int_0^t H_{qj}^{(1)}(t) e^{-\frac{i(E_j^{(0)} - E_q^{(0)})t}{\hbar}} dt = -\frac{i}{\hbar} \int_0^t H_{qj}^{(1)}(t) e^{-i\omega_{jq}t} dt; \quad \hbar\omega_{jq} = E_j^{(0)} - E_k^{(0)}$$

Could continue, but we won't!!!

Therefore to first order:

$$a_q(t) = a_q^{(0)}(t) + a_q^{(1)}(t) = 0 - \frac{i}{\hbar} \int_0^t H_{qj}^{(1)}(t) e^{-i\omega_{jq}t} dt$$
 $q \neq j$

This allows us to calculate the transition probability, $P_q(t)$, from state j (with $a_i(0)=1$) to any state q (with $a_q(0)=0$) as:

$$P_{q}(t) = |a_{q}(t)|^{2} = |a_{q}^{(0)}(t) + a_{q}^{(1)}(t) + a_{q}^{(2)}(t) + \dots|^{2}$$

$$\approx |a_{q}^{(1)}(t)|^{2} + \text{terms of order 3 or higher}$$

Have solved the problem in principle and approximately as long as we can:

1. Evaluate
$$H_{qj}^{(1)}(t) = \langle \psi_q | \hat{H}^{(1)}(t) | \psi_j \rangle$$

2. Evaluate
$$a_q^{(1)}(t) = -\frac{i}{\hbar} \int_0^t H_{qj}^{(1)} e^{i\omega_{qj}t} dt$$

Note: transition probability = 0 if $H_{qq}^{(1)} = 0$.

Thus, the perturbation $\mathbf{H}^{(1)}(t)$ must "connect" states.

This yields **SELECTION RULES** to first order.

$$H_{qj}^{(1)}(t) = 0$$
 implies a forbidden transition

 $H_{qj}^{(1)}(t) \neq 0$ implies an allowed transition

This result works for direct transitions only: $j \rightarrow n \rightarrow q$ not allowed.