3.1-d: Hydrogen Spectra

- Later, we will learn about selection rules for transition. For the principal quantum number, $n, \Delta n$ can be any positive (absorption) or negative (for emission) integer, resulting in the very rich form of the H atom spectrum. The Rydberg formula

$$
\omega=\mathrm{R}_{\mathrm{H}} \cdot\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right) \quad \text { where } \mathrm{R}_{\mathrm{H}}=\frac{2 \pi^{2} \mu_{e} e^{4}}{\left(4 \pi \varepsilon_{o}\right)^{2} h^{3} c}=109,737 \mathrm{~cm}^{-1} \quad \text { and } n_{1}<n_{2}
$$

-Emission lines fall in characteristic spectral regions The Lyman series $(n 1=1)$ in the ultraviolet The Balmer series $(n 1=2)$ in the visible The Paschen series $(n 1=3)$ in the near IR

The Balmer series

- Absorption frequencies coincide with those for emission
- Transitions having $n_{1} \neq 1$ are observed only after preparation of the excited state by some means, such as electrical discharge.
- The ionization limit in absorption corresponds to a final quantum number $n_{2}=\infty$. From the ground state, $\mathrm{I}_{\mathrm{o}}=\mathrm{R}_{\mathrm{H}}$, or 13.6 eV

3.1-e: The H-Atom Orbitals

$$
\psi_{\mathrm{n} \ell \mathrm{~m}_{\ell}}(\mathrm{r}, \theta, \varphi)=\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r}) \cdot \mathrm{Y}_{\ell \mathrm{m}_{\ell}}(\theta, \varphi)
$$

Imaginary functions

$$
\begin{aligned}
& \psi_{100}=\frac{1}{\sqrt{\pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot e^{-r / a_{o}} \\
& \psi_{200}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot\left(2-\frac{r}{a_{o}}\right) \cdot e^{-r / 2 a_{o}} \\
& \psi_{210}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot \frac{r}{a_{o}} \cdot e^{-r / 2 a_{o}} \cdot \cos \theta
\end{aligned}
$$

$$
\psi_{21 \pm 1}=\frac{1}{8 \sqrt{2 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot \frac{r}{a_{o}} \cdot e^{-r / 2 a_{o}} \cdot \sin \theta \cdot e^{ \pm i \varphi}
$$

$$
\begin{aligned}
& \psi_{300}=\frac{1}{81 \sqrt{3 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot\left(27-18 \frac{r}{a_{o}}+2 \frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r / 3 a_{o}} \\
& \psi_{310}=\frac{1}{81}\left(\frac{2}{\pi}\right)^{1 / 2}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot\left(6 \frac{r}{a_{o}}-\frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r / 3 a_{o}} \cdot \cos \theta \\
& \psi_{31 \pm 1}=\frac{1}{81 \sqrt{\pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot\left(6 \frac{r}{a_{o}}-\frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r / 3 a_{o}} \cdot \sin \theta \cdot e^{ \pm 2 i \varphi} \\
& \psi_{320}=\frac{1}{81 \sqrt{6 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot \frac{r^{2}}{a_{o}^{2}} \cdot e^{-r / 3 a_{o}} \cdot\left(3 \cos ^{2} \theta-1\right) \\
& \psi_{32 \pm 1}=\frac{1}{81 \sqrt{\pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot \frac{r^{2}}{a_{o}^{2}} \cdot e^{-r / 3 a_{o}} \cdot \sin \theta \cdot \cos \theta \cdot e^{ \pm i \varphi} \\
& \psi_{32 \pm 2}=\frac{1}{162 \sqrt{\pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot \frac{r^{2}}{a_{o}^{2}} \cdot e^{-r / 3 a_{o}} \cdot \sin ^{2} \theta \cdot e^{ \pm 2 i \varphi}
\end{aligned}
$$

$$
\Psi_{{\mathrm{n}, \mathrm{~m}_{\ell}}}(\mathrm{r}, \theta, \varphi)=\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r}) \cdot \mathrm{Y}_{\ell \mathrm{m}_{\ell}}(\theta, \varphi)
$$

Real functions

$$
\begin{aligned}
& \psi_{2 p_{x}}(r, \theta, \varphi)=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot \frac{r}{a_{o}} \cdot e^{-r / 2 a_{o}} \cdot \sin \theta \cdot \cos \varphi \\
& \psi_{2 p_{y}}(r, \theta, \varphi)=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot \frac{r}{a_{o}} \cdot e^{-r / 2 a_{o}} \cdot \sin \theta \cdot \sin \varphi \\
& \psi_{2 p_{z}}(r, \theta, \varphi)=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot \frac{r}{a_{o}} \cdot e^{-r / 2 a_{o}} \cdot \cos \theta \\
& \psi_{3 p_{x}}(r, \theta, \varphi)=\frac{\sqrt{2}}{81 \sqrt{\pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot\left(6 \frac{r}{a_{o}}-\frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r / 3 a_{o}} \cdot \sin \theta \cdot \cos \varphi \\
& \psi_{3 p_{y}}(r, \theta, \varphi)=\frac{\sqrt{2}}{81 \sqrt{\pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot\left(6 \frac{r}{a_{o}}-\frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r / 3 a_{o}} \cdot \sin \theta \cdot \sin \varphi \\
& \psi_{3 p_{z}}(r, \theta, \varphi)=\frac{\sqrt{2}}{81 \sqrt{\pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \cdot\left(6 \frac{r}{a_{o}}-\frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r / 3 a_{o}} \cdot \cos \theta
\end{aligned}
$$

$$
\Psi_{\mathrm{n} \ell \mathrm{~m}_{\ell}}(\mathrm{r}, \theta, \varphi)=\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r}) \cdot \mathrm{Y}_{\ell \mathrm{m}_{\ell}}(\theta, \varphi)
$$

Real functions

$$
\begin{aligned}
& \psi_{3 d_{z^{2}}}(r, \theta, \varphi)=\frac{1}{81 \sqrt{6 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \frac{r^{2}}{a_{o}{ }^{2}} \cdot e^{-r / 3 a_{o}} \cdot\left(3 \cos ^{2} \theta-1\right) \\
& \psi_{3 d_{x z}}(r, \theta, \varphi)=\frac{\sqrt{2}}{81 \sqrt{\pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \frac{r^{2}}{a_{o}{ }^{2}} \cdot e^{-r / 3 a_{o}} \cdot \sin \theta \cdot \cos \theta \cdot \cos \varphi \\
& \psi_{3 d_{y z}}(r, \theta, \varphi)=\frac{1}{81 \sqrt{\pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \frac{r^{2}}{a_{o}{ }^{2}} \cdot e^{-r / 3 a_{o}} \cdot \sin \theta \cdot \cos \theta \cdot \sin \varphi \\
& \psi_{3 d_{x^{2}-y^{2}}}(r, \theta, \varphi)=\frac{1}{81 \sqrt{2 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \frac{r^{2}}{a_{o}{ }^{2}} \cdot e^{-r / 3 a_{o}} \cdot \sin ^{2} \theta \cdot \cos 2 \varphi \\
& \psi_{3 d_{x y}}(r, \theta, \varphi)=\frac{1}{81 \sqrt{2 \pi}}\left(\frac{1}{a_{o}}\right)^{3 / 2} \frac{r^{2}}{a_{o}{ }^{2}} \cdot e^{-r / 3 a_{o}} \cdot \sin ^{2} \theta \cdot \sin 2 \varphi
\end{aligned}
$$

-The wave functions

$$
\psi_{\mathrm{n} \ell \mathrm{~m}_{\ell} m_{s}}(\mathrm{r}, \theta, \varphi, \delta)=\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r}) \cdot \mathrm{Y}_{\ell \mathrm{m}_{\ell}}(\theta, \varphi) \cdot\left\{\begin{array}{l}
\alpha \\
\beta
\end{array}\right\}
$$

where $\mathrm{R}_{\mathrm{n}, \ell}(\mathrm{r})=$ the radial wave function and $\mathrm{Y}_{\ell, \mathrm{m}_{\ell}}(\theta, \varphi)=$ the angular wave function

$$
\mathrm{Y}_{\ell, \mathrm{m}_{\ell}}(\theta, \varphi) \propto \Theta_{\ell, m_{\ell}}(\cos \theta) \cdot e^{i m_{\ell} \varphi}
$$

The φ-dependence is important in giving rise to selection rules on changes in the quantum number m_{ℓ}

Behaviour of the orbitals near the nucleus

Close to the nucleus,
p orbitals are proportional to r d orbitals are proportional to r^{2}
forbitals are proportional to r^{3}

Electrons are progressively excluded from the neighborhood of the nucleus as 1 increases.

Note that the s orbital as a finite, non-zero value at the nucleus.

3.1-f: Contour Plots of the

3.1-g: Probability Density Functions

$$
\psi_{\mathrm{n} \ell \mathrm{~m}_{\ell}}^{2}(r, \theta, \varphi)
$$

- Shell model (the Bohr Atom) vs. Quantum mechanical model Knowledge of the location of the electron in the H -atom vs. knowledge of the probability of finding it in a small volume element at a specific location
-The probability $\propto \psi^{*} \psi d \tau$
- To what extent does the exact quantum mechanical solution resemble the shell model?
\Rightarrow The radial distribution function

3.1-h: The Radial Distribution Function

-The probability of finding the electron in a particular region, r, θ and φ, in space

$$
\psi_{\mathrm{n} \ell \mathrm{~m}_{\ell}}^{2}(r, \theta, \varphi) \cdot r^{2} \sin \theta \cdot d r \cdot d \theta \cdot d \varphi
$$

-What we are really interested in is
"What is the probability of finding the electron at a particular value of r, regardless of the values of θ and φ ?"

This can be obtained by integrating the probability density over all values of θ and φ

$$
\begin{aligned}
& P(r) \cdot d r=\int_{\varphi=0}^{2 \pi} \int_{\theta=0}^{\pi} \Psi_{\mathrm{n} \ell \mathrm{~m}_{\ell}}^{2}(r, \theta, \varphi) \cdot r^{2} \sin \theta \cdot d r \cdot d \theta \cdot d \varphi \\
& P(r) \cdot d r=r^{2} \cdot\left[R_{n \ell}(r)\right]^{2} \cdot d r
\end{aligned}
$$

-The new function, $\mathrm{P}(\mathrm{r})$, is called the radial distribution function
The probability function of choice to determine the most likely radius to find the electron for a given orbital

Old Convention: Shells vs. Sub-shells

SHELL

4.1 Angular Momentum

a) General Properties: apply to all angular momenta.

Any property \mathbf{M} is assigned as an angular momentum if it obeys the following relationships:

$$
\begin{aligned}
& \text { i) } \hat{M}^{2}=\hat{M}_{x}^{2}+\hat{M}_{y}^{2}+\hat{M}_{z}^{2} \\
& \text { ii) }\left[\hat{M}_{x}, \hat{M}_{y}\right]=i \hbar \hat{M}_{z} ;\left[\hat{M}_{y}, \hat{M}_{z}\right]=i \hbar \hat{M}_{x} ;\left[\hat{M}_{z}, \hat{M}_{x}\right]=i \hbar \hat{M}_{y} \\
& \text { iii) }\left[\hat{M}^{2}, \hat{M}_{x}\right]=\left[\hat{M}^{2}, \hat{M}_{y}\right]=\left[\hat{M}^{2}, \hat{M}_{z}\right]=0
\end{aligned}
$$

M has $\quad \hat{M}_{+}=\hat{M}_{x}+i \hat{M}_{y} \quad$ Raising operator

$$
\hat{M}_{-}=\hat{M}_{x}-i \hat{M}_{y} \quad \text { Lowering operator }
$$

Two quantum numbers are needed because \mathbf{M} has two properties:

$$
\begin{array}{ll}
\hat{M}^{2} \psi_{j, m_{j}}=j(j+1) \hbar^{2} \psi_{j, m_{j}} & j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots \\
\hat{M}_{z} \psi_{j, m_{j}}=m_{j} \hbar \psi_{j, m_{j}} & m_{j}=-j,-j+1, \ldots j-1, j
\end{array}
$$

Note:

1.) j can have non-integer values in general
2.) m_{j} has symmetric values about 0

Also:
$\left\langle\psi_{j, m_{j}+1}\right| \hat{M}_{+}\left|\psi_{j, m_{j}}\right\rangle=\hbar \sqrt{j(j+1)-m_{j}\left(m_{j}+1\right)}=\hbar \sqrt{\left(j-m_{j}\right)\left(j+m_{j}+1\right)}$
$\left\langle\psi_{j, m_{j}-1}\right| \hat{M}_{-}\left|\psi_{j, m_{j}}\right\rangle=\hbar \sqrt{j(j+1)-m_{j}\left(m_{j}-1\right)}=\hbar \sqrt{\left(j+m_{j}\right)\left(j-m_{j}+1\right)}$

Note: from the definitions of \mathbf{M}_{+}and \mathbf{M}_{-}one can readily show:

$$
\hat{M}_{x}=\frac{\left(\hat{M}_{+}+\hat{M}_{-}\right)}{2} \text { and } \hat{M}_{y}=\frac{\left(\hat{M}_{+}-\hat{M}_{-}\right)}{2 i}
$$

One specific example seen in C374a is Orbital Angular Momentum of the electron.
Here: $\hat{M}=\hat{L}$ and it operators on H-atom wave function $\psi_{n, \ell, m_{\ell}}$
The quantum numbers here are integer:

$$
\ell=0,1,2, \ldots \quad m_{\ell}=-\ell, \ldots,+\ell
$$

