3.1-d: Hydrogen Spectra

• Later, we will learn about selection rules for transition. For the principal quantum number, n, Δn can be any positive (absorption) or negative (for emission) integer, resulting in the very rich form of the H atom spectrum. The Rydberg formula

$$\omega = R_{\rm H} \cdot \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \qquad \text{where } R_{\rm H} = \frac{2\pi^2 \mu_e e^4}{(4\pi\varepsilon_o)^2 h^3 c} = 109,737 \,\text{cm}^{-1} \qquad \text{and } n_1 < n_2$$

•Emission lines fall in characteristic spectral regions The Lyman series (n1 = 1) in the ultraviolet The Balmer series (n1 = 2) in the visible The Paschen series (n1 = 3) in the near IR

<u>The Balmer series</u>

- Transitions having $n_1 \neq 1$ are observed only after preparation of the excited state by some means, such as electrical discharge.
- The ionization limit in absorption corresponds to a final quantum number $n_2 = \infty$. From the ground state, $I_0 = R_H$, or 13.6 eV

3.1-e: The H-Atom Orbitals

$$\Psi_{n\ell m_{\ell}}(\mathbf{r},\theta,\varphi) = R_{n\ell}(\mathbf{r}) \cdot Y_{\ell m_{\ell}}(\theta,\varphi)$$

Imaginary functions

$$\begin{split} \psi_{100} &= \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot e^{-r/a_o} \\ \psi_{200} &= \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot \left(2 - \frac{r}{a_o}\right) \cdot e^{-r/2a_o} \\ \psi_{210} &= \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot \left(2 - \frac{r}{a_o}\right) \cdot e^{-r/2a_o} \\ \psi_{210} &= \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot \frac{r}{a_o} \cdot e^{-r/2a_o} \cdot \cos\theta \\ \psi_{210} &= \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot \frac{r}{a_o} \cdot e^{-r/2a_o} \cdot \cos\theta \\ \psi_{211} &= \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot \frac{r}{a_o} \cdot e^{-r/2a_o} \cdot \cos\theta \\ \psi_{21\pm 1} &= \frac{1}{8\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot \frac{r}{a_o} \cdot e^{-r/2a_o} \cdot \sin\theta \cdot e^{\pm i\varphi} \\ \psi_{21\pm 1} &= \frac{1}{8\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot \frac{r^2}{a_o^2} \cdot e^{-r/3a_o} \cdot (3\cos^2\theta - 1) \\ \psi_{21\pm 1} &= \frac{1}{8\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot \frac{r^2}{a_o^2} \cdot e^{-r/3a_o} \cdot \sin\theta \cdot \cos\theta \cdot e^{\pm i\varphi} \\ \psi_{32\pm 2} &= \frac{1}{162\sqrt{\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \cdot \frac{r^2}{a_o^2} \cdot e^{-r/3a_o} \cdot \sin^2\theta \cdot e^{\pm 2i\varphi} \end{split}$$

 $\Psi_{n\ell m_{\ell}}(\mathbf{r},\theta,\varphi) = R_{n\ell}(\mathbf{r}) \cdot Y_{\ell m_{\ell}}(\theta,\varphi)$

Real functions

$$\begin{split} \psi_{2p_{x}}(r,\theta,\varphi) &= \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \cdot \frac{r}{a_{o}} \cdot e^{-r/2a_{o}} \cdot \sin\theta \cdot \cos\varphi \\ \psi_{2p_{y}}(r,\theta,\varphi) &= \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \cdot \frac{r}{a_{o}} \cdot e^{-r/2a_{o}} \cdot \sin\theta \cdot \sin\varphi \\ \psi_{2p_{z}}(r,\theta,\varphi) &= \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \cdot \frac{r}{a_{o}} \cdot e^{-r/2a_{o}} \cdot \cos\theta \\ \psi_{3p_{x}}(r,\theta,\varphi) &= \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \cdot \left(6\frac{r}{a_{o}} - \frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r/3a_{o}} \cdot \sin\theta \cdot \cos\varphi \\ \psi_{3p_{y}}(r,\theta,\varphi) &= \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \cdot \left(6\frac{r}{a_{o}} - \frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r/3a_{o}} \cdot \sin\theta \cdot \sin\varphi \\ \psi_{3p_{z}}(r,\theta,\varphi) &= \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \cdot \left(6\frac{r}{a_{o}} - \frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r/3a_{o}} \cdot \sin\theta \cdot \sin\varphi \\ \psi_{3p_{z}}(r,\theta,\varphi) &= \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \cdot \left(6\frac{r}{a_{o}} - \frac{r^{2}}{a_{o}^{2}}\right) \cdot e^{-r/3a_{o}} \cdot \cos\theta \end{split}$$

$$\Psi_{n\ell m_{\ell}}(\mathbf{r},\theta,\varphi) = R_{n\ell}(\mathbf{r}) \cdot Y_{\ell m_{\ell}}(\theta,\varphi)$$

Real functions

$$\psi_{3d_{z^{2}}}(r,\theta,\varphi) = \frac{1}{81\sqrt{6\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \frac{r^{2}}{a_{o}^{2}} \cdot e^{-r/3a_{o}} \cdot (3\cos^{2}\theta - 1)$$

$$\psi_{3d_{xz}}(r,\theta,\varphi) = \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \frac{r^{2}}{a_{o}^{2}} \cdot e^{-r/3a_{o}} \cdot \sin\theta \cdot \cos\theta \cdot \cos\varphi$$

$$\psi_{3d_{yz}}(r,\theta,\varphi) = \frac{1}{81\sqrt{\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \frac{r^{2}}{a_{o}^{2}} \cdot e^{-r/3a_{o}} \cdot \sin\theta \cdot \cos\theta \cdot \sin\varphi$$

$$\psi_{3d_{yz}}(r,\theta,\varphi) = \frac{1}{81\sqrt{2\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \frac{r^{2}}{a_{o}^{2}} \cdot e^{-r/3a_{o}} \cdot \sin^{2}\theta \cdot \cos 2\varphi$$

$$\psi_{3d_{yy}}(r,\theta,\varphi) = \frac{1}{81\sqrt{2\pi}} \left(\frac{1}{a_{o}}\right)^{\frac{3}{2}} \frac{r^{2}}{a_{o}^{2}} \cdot e^{-r/3a_{o}} \cdot \sin^{2}\theta \cdot \sin 2\varphi$$

•The wave functions

α $\left| \Psi_{\mathrm{n}\ell\mathrm{m}_{\ell}\mathrm{m}_{s}}(\mathbf{r},\theta,\varphi,\delta) = \mathrm{R}_{\mathrm{n}\ell}(\mathbf{r})\cdot\mathrm{Y}_{\ell\mathrm{m}_{\ell}}(\theta,\varphi)\cdot \right|$

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Behaviour of the orbitals near the nucleus

Close to the nucleus,

p orbitals are proportional to r d orbitals are proportional to r^2 f orbitals are proportional to r^3

Electrons are progressively excluded from the neighborhood of the nucleus as l increases.

Note that the s orbital as a finite, non-zero value at the nucleus.

Radius, r

3.1-f: Contour Plots of the

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

3.1-g: Probability Density Functions

•Shell model (the Bohr Atom) vs. Quantum mechanical model Knowledge of the location of the electron in the H-atom vs. knowledge of the probability of finding it in a small volume element at a specific location

•The probability $\propto \psi^* \psi d\tau$

• To what extent does the exact quantum mechanical solution resemble the shell model?

 \Rightarrow The radial distribution function

3.1-h: The Radial Distribution Function

•The probability of finding the electron in a particular region, r, θ and ϕ , in space

$$\psi_{\mathrm{n}\ell\mathrm{m}_{\ell}}^{2}(r,\theta,\varphi)\cdot r^{2}\sin\theta\cdot dr\cdot d\theta\cdot d\varphi$$

•What we are really interested in is

"What is the probability of finding the electron at a particular value of r, regardless of the values of θ and ϕ ?"

This can be obtained by integrating the probability density over all values of θ and ϕ

$$P(r) \cdot dr = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \psi_{n\ell m_{\ell}}^{2} (r,\theta,\varphi) \cdot r^{2} \sin\theta \cdot dr \cdot d\theta \cdot d\varphi$$
$$P(r) \cdot dr = r^{2} \cdot [R_{n\ell}(r)]^{2} \cdot dr$$

•The new function, P(r), is called the **radial distribution function** The probability function of choice to determine the most likely radius to find the electron for a given orbital

Old Convention: Shells vs. Sub-shells

SUB-SHELLS

SHELL
$$n = 1$$
 2 3 4 \downarrow \downarrow \downarrow \downarrow \downarrow K L M N

4.1 Angular Momentum

a) General Properties: apply to all angular momenta.

Any property **M** is assigned as an angular momentum if it obeys the following relationships:

i)
$$\hat{M}^{2} = \hat{M}_{x}^{2} + \hat{M}_{y}^{2} + \hat{M}_{z}^{2}$$

ii) $\left[\hat{M}_{x}, \hat{M}_{y}\right] = i\hbar \hat{M}_{z}; \left[\hat{M}_{y}, \hat{M}_{z}\right] = i\hbar \hat{M}_{x}; \left[\hat{M}_{z}, \hat{M}_{x}\right] = i\hbar \hat{M}_{y}$
iii) $\left[\hat{M}^{2}, \hat{M}_{x}\right] = \left[\hat{M}^{2}, \hat{M}_{y}\right] = \left[\hat{M}^{2}, \hat{M}_{z}\right] = 0$
s $\hat{M}_{+} = \hat{M}_{x} + i\hat{M}_{y}$ Raising operator

M has $M_{+} = M_{x} + iM_{y}$ Raising operator $\hat{M}_{-} = \hat{M}_{x} - i\hat{M}_{y}$ Lowering operator

Two quantum numbers are needed because M has two properties:

$$\hat{M}^{2} \psi_{j,m_{j}} = j(j+1)\hbar^{2} \psi_{j,m_{j}} \qquad j = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$$
$$\hat{M}_{z} \psi_{j,m_{j}} = m_{j}\hbar\psi_{j,m_{j}} \qquad m_{j} = -j, -j+1, \dots, j-1, j$$

Note:

. .

1.) j can have non-integer values in general2.) m_i has symmetric values about 0

Also:

$$\langle \psi_{j,m_j+1} | \hat{M}_+ | \psi_{j,m_j} \rangle = \hbar \sqrt{j(j+1) - m_j(m_j+1)} = \hbar \sqrt{(j-m_j)(j+m_j+1)}$$

 $\langle \psi_{j,m_j-1} | \hat{M}_- | \psi_{j,m_j} \rangle = \hbar \sqrt{j(j+1) - m_j(m_j-1)} = \hbar \sqrt{(j+m_j)(j-m_j+1)}$

Note: from the definitions of M_+ and M_- one can readily show:

$$\hat{M}_x = \frac{(\hat{M}_+ + \hat{M}_-)}{2}$$
 and $\hat{M}_y = \frac{(\hat{M}_+ - \hat{M}_-)}{2i}$

One specific example seen in C374a is Orbital Angular Momentum of the electron.

Here: $\hat{M} = \hat{L}$ and it operators on H-atom wave function Ψ_{n,ℓ,m_ℓ}

The quantum numbers here are integer:

$$\ell = 0, 1, 2, \dots, m_{\ell} = -\ell, \dots, +\ell$$