5. Coupled Angular Momentum

Sometimes, we have to contend with the fact that both the orbital angular momentum and the spin angular momentum exist simultaneously and that they interact. This is the basis of spin-orbit coupling.

Can treat the problem in two ways:

Uncoupled representation $\mathbf{S}^{2}, \mathbf{L}^{2}, \mathbf{S}_{\mathbf{z}} \mathbf{L}_{\mathbf{z}}$ can be specified

Coupled representation

$(\mathbf{S}+\mathbf{L})^{2},\left(\mathbf{S}_{\mathbf{z}}+\mathbf{L}_{\mathbf{z}}\right), \mathbf{S}^{2}, \mathbf{L}^{2}$ can be specified

Case 2. The Uncoupled Scheme

Precession of the Total Angular Momentum about an External Field Case 1. The Coupled Scheme
The coupled representation implies $\left[(\mathbf{S}+\mathbf{L})^{2}, \mathbf{L}_{\mathbf{z}}\right] \neq 0$ which means we can not know individual components of \mathbf{L} and S. This corresponds to new wave functions $\Psi_{\mathrm{J}}, \mathbf{J}=\mathbf{L}+\mathbf{S}$ (vector sum, later).

5.1 Properties of Total Angular Momentum, J (no proofs)

Consider two angular momentum \mathbf{J}_{1} and \mathbf{J}_{2}
a) \mathbf{J}_{1} and \mathbf{J}_{2} has separate independent origins (spin, orbital, ...)

$$
\begin{aligned}
& {\left[\hat{J}_{1 \eta}, \hat{J}_{2 \eta}\right]=0 \quad \eta=x, y, z} \\
& {\left[\hat{J}_{1}^{2}, \hat{J}_{2}^{2}\right]=0}
\end{aligned}
$$

Therefore, we can specify these individually.
b) The $\operatorname{sum} \mathbf{J}=\mathbf{J}_{1}+\mathbf{J}_{2}$ is also an angular momentum with quantum numbers $\mathrm{j}, \mathrm{m}_{\mathrm{j}}$ such that:

$$
\begin{aligned}
& {\left[\hat{J}_{x}, \hat{J}_{y}\right]=i \hbar \hat{J}_{z}} \\
& {\left[\hat{J}_{y}, \hat{J}_{z}\right]=i \hbar \hat{J}_{x} \quad\left[\hat{J}^{2}, J_{\eta}\right]=0} \\
& {\left[\hat{J}_{z}, \hat{J}_{x}\right]=i \hbar \hat{J}_{y}}
\end{aligned}
$$

c) Total \mathbf{J}^{2} commute with individual $\mathbf{J}_{\mathrm{i}}{ }^{2}, \mathrm{i}=1,2$

Thus: $\left\lfloor\hat{J}^{2}, \hat{J}_{1}^{2}\right\rfloor=\left\lfloor\hat{J}^{2}, \hat{J}_{2}^{2}\right\rfloor=0$
d) Total \mathbf{J}_{z} commutes with \mathbf{J}^{2} and individual $\mathbf{J}_{1}{ }^{2}, \mathbf{J}_{2}{ }^{2}$.
e) (This is the important one) Individual $\mathbf{J}_{1 z}, \mathbf{J}_{2 z}$ do not commute with \mathbf{J}^{2}

Consequences:

a) Can represent system by either:

$$
\begin{aligned}
& \left|j_{1}, m_{j_{1}} ; j_{2}, m_{j_{2}}>=\left|j_{1}, m_{j_{1}}>\right| j_{2}, m_{j_{2}}>=\right.\text { uncoupled wave functions } \\
& \text { or } \mid j_{1}, j_{2}, J, M_{j}>=\text { coupled wave functions } \\
& \text { but not by: } \mid j_{1}, m_{j}, j_{2}, m, J, M_{J}>
\end{aligned}
$$

Not all quantum numbers for commuting operators
b) Allowed values for j and m_{j}

$$
\begin{aligned}
& \hat{J}_{z}\left|j_{1}, m_{j_{1}} ; j_{2}, m_{j_{2}}>=\left(\hat{J}_{1 z}+\hat{J}_{2 z}\right)\right| j_{1}, m_{j_{1}} ; j_{2}, m_{j_{2}}> \\
& \Rightarrow m_{j} \hbar\left|j_{1}, m_{j_{1}} ; j_{2}, m_{j_{2}}>=\left(m_{j_{1}}+m_{j_{2}}\right) \hbar\right| j_{1}, m_{j_{1}} ; j_{2}, m_{j_{2}}>
\end{aligned}
$$

$$
\therefore m_{j}=m_{j_{1}}+m_{j_{2}}
$$

The maximum value of $\mathrm{J}=\mathrm{J}_{\max }=\mathrm{j}_{1}+\mathrm{j}_{2}=\mathrm{m}_{\mathrm{j} 1 \text { max }}+\mathrm{m}_{\mathrm{j} 2 \max }$
We have $(2 J+1)$ values of m_{j} but we have $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$ states to form J.

$$
\begin{aligned}
& \left(2 j_{1}+1\right)\left(2 j_{2}+1\right)=4 j_{1} j_{2}+2 j_{1}+2 j_{2}+1 \\
& =4 j_{1} j_{2}+2\left(j_{1}+j_{2}\right)+1 \\
& =4 j_{1} j_{2}+\underbrace{2(j)+1}_{m_{j}}
\end{aligned}
$$

There is a redundancy in values which arises from the possibility of constructing states of same j with different m_{j} values

Turns out that total j can have values:

$$
J=j_{1}+j_{2}, j_{1}+j_{2}-1, j_{1}+j_{2}-2 . .,\left|j_{1}-j_{2}\right|
$$

$=$ vector sum $=$ Clebsch-Gordon series

$$
M_{J}=m_{j_{1}}+m_{j_{2}}
$$

An example which is relevant to organic chemistry: systems with 2 electron spins

$$
\begin{aligned}
& \uparrow \uparrow=\alpha_{1} \alpha_{2}=\left|s_{1}, m_{s_{1}} ; s_{2}, m_{s_{2}}>=\right| \frac{1}{2}, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}> \\
& \downarrow \downarrow=\beta_{1} \beta_{2}=\left|s_{1}, m_{s_{1}} ; s_{2}, m_{s_{2}}>=\right| \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}> \\
& \uparrow \downarrow=\alpha_{1} \beta_{2}=\left|s_{1}, m_{s_{1}} ; s_{2}, m_{s_{2}}>=\right| \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}> \\
& \downarrow \uparrow=\beta_{1} \alpha_{2}=\left|s_{1}, m_{s_{1}} ; s_{2}, m_{s_{2}}>=\right| \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}>
\end{aligned}
$$

Coupled Representation

$$
\begin{aligned}
S & =\left(s_{1}+s_{2}\right) \rightarrow\left|s_{1}-s_{2}\right| \\
& =\left(\frac{1}{2}+\frac{1}{2}\right) \rightarrow\left|\frac{1}{2}-\frac{1}{2}\right|=1,0
\end{aligned}
$$

When $S=0, M_{S}=0$, and when $S=1, M_{S}=1,0,-1$
Therefore, the coupled wave functions are:

$$
\left|s_{1}, s_{2}, S, M_{S}\right\rangle
$$

$$
\begin{aligned}
& =\left\lvert\, \frac{1}{2}\right., \frac{1}{2}, 0,0>\quad \text { Singlet, }(2 \mathrm{~S}+1)=\left(2^{\star} 0+1\right)=0 \quad 2 \mathrm{~S}+1=\text { spin multiplicity. } \\
& =\left|\frac{1}{2}, \frac{1}{2}, 1,1>\left|\frac{1}{2}, \frac{1}{2}, 1,0>\right| \frac{1}{2}, \frac{1}{2}, 1,-1>\quad \text { Triplet, }(2 \mathrm{~S}+1)=\left(2^{\star} 1+1\right)=3\right.
\end{aligned}
$$

Note: 4 states just like for the uncoupled representation!

Jablonski Digram showing photophysical relaxation pathways of a typical organic compound

