
1.2: Extension to N1.2: Extension to N--particle systemparticle system
a)a)

 

Consider N particles: i = 1,2,3,…,N
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b)b)

 

Ψ

 

must be bounded, continuous, single-valued, continuous derivatives
with respect to all coordinates.

c)c)

 

Integrals over all space: N21N21N21 ...dzdzdz...dydydy...dxdxdx=τd

d)d)

 

Operators depend on all coordinates and all momenta and time
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∫∫ ΨΨ=

implies integration over all coordinates.



1.3: Stationary States1.3: Stationary States

In C374 we saw several examples in which Ĥ was independent of time

because both T̂ and V̂ were independent of time. This generated a set of

stationary states
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This works:
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Assume Ψ

 

is normalized.



Called stationary states because all expectation values of the time-independent
Operators are constants with respect to time and because |Ψ|2

 

is independent
of time.

Examples covered in C374 were the particle in a box, simple harmonic oscillator
The rigid rotor, and the H-atom.



1.4: Self1.4: Self--adjoint (Hermitian) operatorsadjoint (Hermitian) operators
These operators are special because they have real eigenvalues and therefore,
correspond to physical observables.

Designate an adjoint operator as: +M̂
This corresponds to the complex conjugate of a transposed matrix

 

(Later)

( )*ˆˆ TMM =+

Must satisfy the following defining equation:

( ) ( ) τφχτφχ dMdM
** ˆˆ ∫∫ +=

A self-adjoint operator means MM ˆˆ =+

Therefore: ( ) ( ) τφχτφχ dMdM
** ˆˆ ∫∫ =



Theorem:Theorem:

 

Quantum mechanical operators corresponding to real physical 
properties of a system are self-adjoint.

jjj mM ψψ =ˆFrom postulate II where mj

 

is real.
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( ) MM =∴
* as it must be since M corresponds to a physical

observable.



Theorem:Theorem:

 

The eigenfunctions of a self-adjoint operator corresponding to 
different eigenvalues are orthogonal.

Choose Ψn

 

and Ψm

 

such that:
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Definition:Definition:

 

Kronecker

 

delta function:
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Importance of this result lies in the Expansion Theorem
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