1.2: Extension to N-particle system

a) Consider N particles: $\mathrm{i}=1,2,3, \ldots, \mathrm{~N}$

Now: $\hat{H}=\hat{T}+\hat{V}=\sum_{i} \hat{T}_{i}+V\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N} ; t\right)$

$$
\hat{T}_{i}=\frac{1}{2 m_{i}} \vec{p}_{i}^{2}=-\frac{\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}=-\frac{\hbar^{2}}{2 m_{i}}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial y_{i}^{2}}+\frac{\partial^{2}}{\partial z_{i}^{2}}\right)
$$

Solve to get $\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)$
b) Ψ must be bounded, continuous, single-valued, continuous derivatives with respect to all coordinates.
c) Integrals over all space: $\quad d \tau=\mathrm{dx}_{1} \mathrm{dx}_{2} \ldots \mathrm{dx}_{\mathrm{N}} \mathrm{dy}_{1} \mathrm{dy}_{2} \ldots \mathrm{dy}_{\mathrm{N}} \mathrm{dz}_{1} \mathrm{dz}_{2} \ldots \mathrm{dz}_{\mathrm{N}}$
d) Operators depend on all coordinates and all momenta and time
e) $\left|\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)\right|^{2} d \tau \quad=$ probability that particle i is found between x_{i} and $x_{i}+d x_{i,}, y_{i}$ and $y_{i}+d y_{i}, z_{i}$ and $z_{i}+d z_{i}$ at time t
f) $\bar{M}=\int \Psi^{*}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right) \hat{M} \int \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right) d \tau$
implies integration over all coordinates.

1.3: Stationary States

In C374 we saw several examples in which \hat{H} was independent of time because both $\quad \hat{T}$ and \hat{V} were independent of time. This generated a set of stationary states

$$
\hat{H} \Psi=-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}
$$

Solve by letting $\quad \Psi(\vec{r}, t)=\psi(\vec{r}) e^{-\frac{i E t}{\hbar}} \quad$ (comes from separation of variables)
and solving $\quad \hat{H} \psi(\vec{r})=E \psi(\vec{r})$

This works:
LHS

$$
\hat{H} \Psi=\hat{H} \psi(\vec{r}) e^{-\frac{i E t}{\hbar}}=e^{-\frac{i E t}{\hbar}} \hat{H} \psi(\vec{r})=e^{-\frac{i E t}{\hbar}} E \psi(\vec{r})=E \Psi
$$

RHS

$$
-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}=-\frac{\hbar}{i} \frac{\partial \psi(\vec{r}) e^{-\frac{i E t}{\hbar}}}{\partial t}=-\frac{\hbar}{i} \psi(\vec{r})\left(-\frac{i E}{\hbar}\right) e^{-\frac{i E t}{\hbar}}=E \psi(\vec{r}) e^{--\frac{i E t}{\hbar}}=E \Psi
$$

Show $\quad \bar{H}=E \quad$ Assume Ψ is normalized.

$$
\begin{aligned}
& \bar{H}=\int \Psi^{*} \hat{H} \Psi d \tau=\int\left(\psi^{*}(\vec{r}) e^{\frac{i E t}{\hbar}}\right) \hat{H}\left(\psi(\vec{r}) e^{-\frac{i E t}{\hbar}}\right) d \tau \\
= & \int\left(e^{\frac{i E t}{\hbar}} e^{-\frac{i E t}{\hbar}}\right) \psi^{*}(\vec{r}) \hat{H} \psi(\vec{r}) d \tau=E \int \psi^{*}(\vec{r}) \psi(\vec{r}) d \tau=E
\end{aligned}
$$

Called stationary states because all expectation values of the time-independent Operators are constants with respect to time and because $|\Psi|^{2}$ is independent of time.

Examples covered in C374 were the particle in a box, simple harmonic oscillator The rigid rotor, and the H -atom.

1.4: Self-adjoint (Hermitian) operators

These operators are special because they have real eigenvalues and therefore, correspond to physical observables.

Designate an adjoint operator as: $\quad \hat{M}^{+}$
This corresponds to the complex conjugate of a transposed matrix (Later)

$$
\hat{M}^{+}=\left(\hat{M}^{T}\right)^{*}
$$

Must satisfy the following defining equation:

$$
\int \chi^{*}(\hat{M} \phi) d \tau=\int\left(\hat{M}^{+} \chi\right)^{*} \phi d \tau
$$

A self-adjoint operator means $\hat{M}^{+}=\hat{M}$
Therefore: $\quad \int \chi^{*}(\hat{M} \phi) d \tau=\int(\hat{M} \chi)^{*} \phi d \tau$

Theorem: Quantum mechanical operators corresponding to real physical properties of a system are self-adjoint.

From postulate II $\hat{M} \psi_{j}=m_{j} \psi_{j} \quad$ where m_{j} is real.

$$
\Rightarrow\langle M\rangle=\bar{M}=\int \psi^{*}(\hat{M} \psi) d \tau=m \int \psi^{*} \psi d \tau=m
$$

Now: $\quad(\langle M\rangle)^{*}=(\bar{M})^{*}=\left[\int \psi^{*}(\hat{M} \psi) d \tau\right]^{*}$

If operator is self-adjoint $\Rightarrow\left[\int(\hat{M} \psi)^{*} \psi d \tau\right]^{*}=\left[m^{*} \int \psi^{*} \psi d \tau\right]^{*}=m$
$\therefore(\bar{M})^{*}=\bar{M} \quad \begin{aligned} & \text { as it must be since } M \text { corresponds to a physical } \\ & \text { observable. }\end{aligned}$

Theorem: The eigenfunctions of a self-adjoint operator corresponding to different eigenvalues are orthogonal.

Choose Ψ_{n} and Ψ_{m} such that:
$\hat{M} \psi_{n}=m_{n} \psi_{n}$ and $\hat{M} \psi_{m}=m_{m} \psi_{m}$ and $m_{n} \neq m_{m} \neq 0$
Then: $\int \psi_{m}^{*}\left(\hat{M} \psi_{n}\right) d \tau=\int\left(\hat{M} \psi_{m}\right)^{*} \psi_{n} d \tau$
\mathbf{M} is self-adjoint
$\therefore m_{n} \int \psi_{m}^{*} \psi_{n} d \tau=m_{m}^{*} \int \psi_{m}^{*} \psi_{n} d \tau$

$$
\therefore\left(m_{n}-m_{m}^{*}\right) \int \psi_{m}^{*} \psi_{n} d \tau=0
$$

$$
\operatorname{But}\left(m_{n}-m_{m}^{*} \neq 0\right) \quad \therefore \int \psi_{m}^{*} \psi_{n} d \tau=0 \quad \text { unless } \mathrm{m}=\mathrm{n}
$$

Definition: Kronecker delta function:

$$
\begin{aligned}
\delta_{m n} & =1 \text { if } m=n \\
& =0 \text { if } m \neq n
\end{aligned}
$$

$$
\Rightarrow \int \psi_{m}^{*} \psi_{n} d \tau=\delta_{m n}
$$

Importance of this result lies in the Expansion Theorem

