The quantum mechanical operator should arise as:
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From this we can expect:

£(r)= 1 dv(r) e dg(r)

 m%c?r dr m2c?r dr

This turns out to be oft by a factor of 2 due to relativistic eftects.
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6.2 Spin-orbit coupling to first order

Can set up the total Hamiltonian in the SO-coupled limit as:
H=HO®+H,

l

Hamiltonian in the absence of SO coupling

Note: H¢, commute with each component, J?, L?, S2, and therefore all these
operators have a common set of eigenfunctions when expressed in the coupled
representation.



By perturbation theory can predict:

(1) _ J@
Eq =< Wq | H | Wq >
where the L|Jq’s are wave functions in the coupled representation
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Fact: The Rydberg constant = R; = ionization energy of the H-atom, is given by:

me”’ )
h =R, = >3 =109737.31cm™
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This Rydberg constant assumes the nucleus has infinite weight relative to the electron
which 1s an OK approximation even for hydrogen.
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Finally, we can write: n® < S (r) >= hea :TOOZ
ngf(f + j(f +1)
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where A 1s the dimensionless 5
fine-structure constant = e

7.29720 x 1073
. hic



2 < &(r)>=heé,,

= spin-orbit coupling constant when §_, is measured in cm!.

Note the Z* dependence. We can therefore expect SO interactions to
become important for heavier elements.
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Hence:  Ea(N4,s, J)=§hC§n,z[J(J+1)—f(€+1)—3(5+1)]

and E(n,¢,s,j)=E@+EQ(n,¢5s,j)
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Note: the energy does not depend on the quantum number m,

Also note: the Z? dependence for H-like (1 electron) atoms: He™", Li**, etc.



