
Again as in the H-atom, first-
order perturbation theory 
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This is the LandéLandé interval ruleinterval rule:  the spin-orbit splitting between sequential J levels in a 
term is proportional to the larger of the J values.

Whether the level with the largest value of J lies highest or lowest energy is determined by 
the sign of ζ.

If ζ > 0, the term is said to be regular (as for C), and If ζ < 0, the term is inverted (as for O)

Hund’sHund’s third rulethird rule: : 
If the ground term arises from a configuration for which valence electrons make up 
a less than half-filled subshells (e.g., C), then the lowest energy term will be regular, 
whereas If the configuration is more than half-filled subshells (e.g., O), then the 
lowest energy term will be inverted.



The Process of Successive Approximation
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Examples of Examples of Hund’sHund’s Third RuleThird Rule

404 cm-1 2P1/

2

3P0

3P1

3P2

226.5 cm-1

158.5 cm-1

0 cm-1

3P2
3P1
3P00 cm-1

43.5 cm-1

16.4 cm-1

0 cm-1 2P3/2

F 1s22s22p5C 1s22s22p2 O 1s22s22p4

The multiplet splitting for the lowest energy term of the C, O and F atoms







8. Many electron atoms8. Many electron atoms

Need a suitable wave function to describe such N-electron atomic systems, N ≥ 2.

Consider perturbation approach.  Split Hamiltonian in the following way:
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where

H0 represents the unperturbed problem of N electrons which do not interact with 
each other (only with the nucleus) and V is the perturbation which accounts for the 
electron-electron interaction via Coulomb’s Law



It is convenient to write:
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This means the unperturbed Hamiltonian can be written as a sum of H-like 
Hamiltonian operators for each individual electron, I, in the atom.  We know 
the solutions:
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iρ
φ namely RY is called an atomic orbital. The complete function (with 

spin) is called a spin atomic orbital or spinor.
The spatial part of 

Since H(0) is separable, the eigenfunctions have the form:
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problem.

The corresponding eigenvalues of H0 are given by:
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Consider the case of the Helium atom.  It is very similar to the hydrogen atom 
except that we have a Z=+2e nuclear charge.

The Hamiltonian where the electron-electron repulsion term is neglected is:
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If we assume the particles are non-interaction then the resulting Schrodinger 
Equation is separable and we can write the Hamiltonian and wave function as:

21 ĤĤĤ +=

)2()1()2,1()( ΨΨ=Ψ=Ψ 21 r,r

This a product wave function again is only exact if the electrons are non-
interacting



With this approximation the energy of the system is given by:
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How good is this approximation?  We can compare the ground state energy of the 
independent electron helium atom and compare it to that determined 
experimentally.

Eo(H with Z=2) = -54.4 eV

Eo(He) = -54.4 - 54.4 = -108.8 eV

The true value is -79.0 eV.  Thus the independent electron approximation is 
surprisingly good; i.e., it is in the right order of magnitude.



ΨΨ(1,2) versus (1,2) versus ΨΨ(1)(1)ΨΨ(2) (2) -- What’s the Difference?What’s the Difference?

Consider a two electron system.  The true many electron wave function should 
indicate that:

The probability of finding the electron at r1, should depend on where the other 
electron is.
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Does the product wave function account for this?
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Lets examine this a bit more closely.

2* )()()()( 21212121 r,rr,rr,rr,r Ψ=ΨΨ=P

Expressing the many-electron wave function as a product wave function we 
have:
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The probabilities are independent, so can these type of approximate wave 
functions account for any electron-electron repulsion? No but…



Although the product wave function is only EXACT for non-interacting 
particles, the approximation does allow us to approximately include the effect of 
the electron-electron interaction (by perturbation theory).

The product wave function approximation of the many electron wave function 
can be a very good approximation. It is the most widely used approximation used in 
research involving calculations in chemistry.



Average Shielding ApproximationAverage Shielding Approximation

In this approximation, we assume the effect of the other electron is to shield the 
nuclear charge from the other electron.

Consider our electron out here

The charge distribution of the 
other electron ‘shields’ the 
nuclear charge from the other 
electron.

Within the independent electron approximation, we can therefore do better than 
just using Z by defining an effective nuclear charge, Zeff
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What is the value of Zeff?



In contrast at the nucleus, the other 
electron does not screen the nuclear 
charge at all, so at  r2=0 then Zeff = +2e.

Out here, the other electron 
screens out 1e  worth of the nuclear 
charge, so if r2= ∞ then Zeff = +1e

Consider both electrons in their ground 1s state.

Thus,  1 < Zeff < 2

In fact, it should be a function of r such that Zeff = Zeff (r)



There are many ways of estimating the effective nuclear charge Zeff from 
calculation and experimental data.
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For example, given that experimental the first ionization potential of He is 24.6 
eV, find an estimate for Zeff
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A better estimate involving a calculation of <H> yields Zeff
2 = 1.6875

Will see that shielding determines many trends associated with the Periodic Table
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