Again as in the H-atom, firstorder perturbation theory gives:

The energy intervals are:

$$\begin{split} E_{J} &= E^{(o)} + \int \psi_{nJM_{J}LS}^{(o)*} \zeta(L,S) \hat{L} \cdot \hat{S} \psi_{nJM_{J}LS}^{(o)} d\tau \\ &= E^{(o)} + \frac{\zeta(L,S)}{2} [J(J+1) - L(L+1) - S(S+1)] \\ \hline E_{J+1} - E_{J} &= \frac{\zeta [(J+1)(J+2) - J(J+1)]}{2} = \xi (J+1) \end{split}$$

This is the **Landé interval rule**: the spin-orbit splitting between sequential J levels in a term is proportional to the larger of the J values.

Whether the level with the largest value of J lies highest or lowest energy is determined by the sign of ζ .

If $\zeta > 0$, the term is said to be regular (as for C), and If $\zeta < 0$, the term is inverted (as for O)

Hund's third rule:

If the ground term arises from a configuration for which valence electrons make up a less than half-filled subshells (e.g., C), then the lowest energy term will be regular, whereas If the configuration is more than half-filled subshells (e.g., O), then the lowest energy term will be inverted.

The Process of Successive Approximation

e.g., the ground state of C

Examples of Hund's Third Rule

The multiplet splitting for the lowest energy term of the C, O and F atoms

5. ELECTRONIC STRUCTURE OF THE ELEMENTS

Table 5.1. Reviewed 2005 by C.G. Wohl (LBNL). The electronic configurations and the ionization energies are from the NIS "Ground Levels and Ionization Energies for the Neutral Atoms," W.C. Martin, A. Musgrove, S. Kotochigova, and J.E. Sanson http://physics.nist.gov (select "Physical Reference Data"). The electron configuration for, say, iron indicates an argon electr argon) plus six 3d electrons and two 4s electrons. The ionization energy is the least energy necessary to remove to infinity one ele atom of the element.

						Ground	Ionization
			Electron configuratio	n		state	energy
	Elen	nent	$(3d^5 = five 3d electron$	s, etc.)		$^{2S+1}L_{J}$	(eV)
1	н	Hydrogen	1s			${}^{2}S_{1/2}$	13.5984
2	\mathbf{He}	Helium	$1s^{2}$			$^{1}S_{0}$	24.5874
3	Li	Lithium	(He)2s			${}^{2}S_{1/2}$	5.3917
4	Be	Beryllium	$(He) 2s^2$			${}^{1}S_{0}$	9.3227
5	в	Boron	$(He) 2s^2 2p$			$^{2}P_{1/2}$	8.2980
6	С	Carbon	$(He) 2s^2 2p^2$			${}^{3}P_{0}$	11.2603
7	N	Nitrogen	$(He) 2s^2 2p^3$			${}^{4}S_{3/2}$	14.5341
8	0	Oxygen	(He) $2s^2 2p^4$			${}^{3}P_{2}$	13.6181
9	F	Fluorine	$(He) 2s^2 2p^5$			$^{2}P_{3/2}$	17.4228
10	Ne	Neon	$(He) 2s^2 2p^6$			${}^{1}S_{0}$	21.5645
11	Na	Sodium	(Ne)3s			${}^{2}S_{1/2}$	5.1391
12	Mg	Magnesium	$(Ne)3s^2$			¹ S0	7.6462
13	Al	Aluminum	$(Ne)3s^2 3p$			$^{2}P_{1/2}$	5.9858
14	Si	Silicon	$(Ne)3s^2 3p^2$			³ Po	8.1517
15	P	Phosphorus	$(Ne)3s^2 3p^3$			4 S2 /2	10.4867
16	S	Sulfur	$(Ne)3s^2 3n^4$			³ Po	10.3600
17	čı	Chlorine	$(Ne)3s^2 3p^5$			${}^{2}P_{2/2}$	12.9676
18	Ar	Argon	$(Ne)3s^2 3p^6$			${}^{1}S_{0}$	15.7596
10	к	Potessium	(Ar) 4e			² S. (2	4 3407
20	C.	Calcium	$(Ar) 4s^2$			1 So	6 1132
21	Se	Scandium	$(Ar)3d$ $4s^2$	т		${}^{2}D_{3/2}$	6.5615
22	Ti	Titanium	$(Ar) 3d^2 4s^2$	r	е	${}^{3}F_{2}$	6.8281
23	v	Vanadium	$(Ar) 3d^3 4s^2$	a	1	${}^{4}F_{3/2}$	6.7462
24	\mathbf{Cr}	Chromium	$(Ar) 3d^5 4s$	n	е	$^{7}S_{3}$	6.7665
25	Mn	Manganese	$(Ar) 3d^{\circ} 4s^{2}$	ь ;	\mathbf{m}	⁶ S _{5/2}	7.4340
26	\mathbf{Fe}	Iron	$(Ar) 3d^6 4s^2$	t	е	${}^{5}D_{4}$	7.9024
27	C_{0}	Cobalt	$(Ar) 3d^7 4s^2$	i	\mathbf{n}	${}^{4}F_{9/2}$	7.8810
28	Ni	Nickel	$(Ar) 3d^8 4s^2$	0	t	${}^{3}F_{4}$	7.6398
29	Cu	Copper	(Ar) 3d ¹⁰ 4s	n	s	${}^{2}S_{1/2}$	7.7264
30	\mathbf{Zn}	Zine	$(Ar) 3d^{10} 4s^2$			${}^{1}S_{0}$	9.3942
31	Ga	Gallium	$(Ar) 3d^{10} 4s^2 4p$			$^{2}P_{1/2}$	5.9993
32	Ge	Germanium	$(Ar) 3d^{10} 4s^2 4n^2$			³ Po	7.8994
33	As	Arsenic	$(Ar) 3d^{10} 4s^2 4p^3$			452/2	9.7886
34	Se	Selenium	$(Ar) 3d^{10} 4s^2 4n^4$			${}^{3}P_{2}$	9.7524
35	Br	Bromine	$(Ar) 3d^{10} 4s^2 4p^5$			${}^{2}P_{2/2}$	11.8138
36	\mathbf{Kr}	Krypton	$(Ar) 3d^{10} 4s^2 4p^6$			${}^{1}S_{0}$	13.9996
37	Bb	Rubidium	(Kr) 5s			$^{2}S_{1/2}$	4.1771
38	Sr	Strontium	$(Kr) 5s^2$			$^{-1/2}_{1S_0}$	5.6949
39	Ŷ	Yttrium	$(Kr)4d 5s^{2}$	т		² D _{3/2}	6.2173
40	Zr	Zirconium	$(Kr)4d^2 5s^2$	r	е	5F2	6.6339
41	NЬ	Niobium	(Kr)4d ⁴ 5s	n	1	^o D _{1/2}	6.7589
42	Mo	Molybdenum	$(Kr)4d^3 5s$		e	' S3	7.0924
43	Te	Technetium	(Kr)4d ⁵ 5s ²	i	m	S5/2	7.28
44	Ru	Ruthenium	(Kr)4d'5s	t	e	ores and	7.3605
45	Rh	Rhodium	(Kr)4d° 5s	i	п +	*F _{9/2}	7.4589
46	Pd	Palladium	$(Kr)4d^{10}$	0	s	S_0	8.3369
47	Ag	Suver	$(Kr) 4a^{10} 5s$	n		² S _{1/2}	7.5762
48	Cd	Cadmium	(Kr)4d ¹⁰ 5s ²			$^{1}S_{0}$	8.9938

49	In	Indium	$(Kr)4d^{10}5s^2$	5p			$^{2}P_{1/2}$	5.7864
50	\mathbf{Sn}	Tin	$(Kr)4d^{10}5s^2$	$5p^2$			${}^{3}P_{0}'$	7.3439
51	Sb	Antimony	$(Kr)4d^{10}5s^2$	$5p^3$			${}^{4}S_{3/2}$	8.6084
52	Te	Tellurium	$(Kr)4d^{10}5s^2$	$5p^4$			${}^{3}P_{2}$	9.0096
53	I	Iodine	$(Kr) 4d^{10} 5s^2$	$5p^{5}$			${}^{2}P_{3/2}$	10.4513
54	Xe	Xenon	$(Kr) 4d^{10} 5s^2$	$5p^6$			$^{1}S_{0}$	12.1298
55	Cs	Cesium	(Xe)	6s			${}^{2}S_{1/2}$	3.8939
56	\mathbf{Ba}	Barium	(Xe)	$6s^2$			${}^{1}S_{0}$	5.2117
							20	
51	La C-	Lanthanum	(Ae) 5a (X-)46 5d	0s~ e_2			$^{2}D_{3/2}$	5.5769
58	Ce	Cerium	(Xe)4f 5a	6s~ c_2			1G4 47	5.5387
59	PT	Praseodymium	(Xe)45 ⁻	0s- e_2	L		51 51	5.473
60 #1	Na Dm	Neodymium Decession	(Xe)45 (X-)46	0s- e_2	n		611	5.5250
60	Sm	Semerium	(Xe)45 (Xe)456	6s2	t		7E	5.6427
62	En	Furopium	$(X_{e})_{4f}^{7}$	6.2	h		85-	5.6704
64	Cd	Cadolinium	(Xo)47 5d	6.2	a		9D-	6 1 409
65	ть	Terbium	$(Xe)4f^{9}$	6s ²	n		6H.m.10	5 8638
66	Dv	Dysprosium	$(X_0)_{4f}^{10}$	6.2	i		510 510	5.0380
67	Ho	Holmium	$(Xe)4f^{11}$	$6s^2$	d		41	6.0215
68	Er	Erbium	$(Xe)4f^{12}$	$6s^2$	e e		³ He	6.1077
69	Tm	Thulium	$(Xe)4 f^{13}$	$6s^2$	5		${}^{2}F_{7/2}$	6.1843
70	Yb	Ytterbium	$(Xe)4 f^{14}$	$6s^2$			1 _{S0}	6.2542
71	Lu	Lutetium	$(Xe)4f^{14}5d$	$6s^2$			${}^{2}D_{2/2}$	5.4259
72	Hf	Hafnium	$(Xe)4f^{14}5d^2$	$6s^2$	т		³ F ₂	6.8251
73	Ta	Tantalum	(Xe)4f ¹⁴ 5d ³	6s ²	r	е	4F3/2	7.5496
74	w	Tungsten	(Xe)4f ¹⁴ 5d ⁴	6s ²	a n	1	⁵ D ₀	7.8640
75	Re	Rhenium	(Ae)4 f ** 5a°	0.5~	s	e	55/2	7.8335
76	Os T	Osmium	(Xe)4f ¹⁴⁵ d ³	6 <i>s</i> ²	i	m	³ D ₄	8.4382
70	Ir De	Indum Distingues	(Xe)4 f ** 5a (Xe)4 e14 e 29	6s-	t	e n	3D	8.9670
70	Ft Au	Cold	$(X_{0})_{4f}^{14} 5a^{2}$	0s 06e	i	t	-D3	0.9000
80	Ha Ha	Mercury	$(X_0)_{4f}^{14} = \frac{3}{5}$	06.2	0	s	$\frac{2S_{1/2}}{1S_{2}}$	10.4275
			(Ae)4) 5a		ⁿ			
81	тı	Thallium	$(Xe)4f^{14}5d^{16}$	$^{0}6s^{2}6p$			${}^{2}P_{1/2}$	6.1082
82	\mathbf{Pb}	Lead	$(Xe)4f^{14}5d^{16}$	$^{0}6s^{2} 6p^{2}$			${}^{3}P_{0}$	7.4167
83	Bi	Bismuth	$(Xe)4f^{14}5d^{10}$	$6s^2 6p^3$			${}^{4}S_{3/2}$	7.2855
84	Po	Polonium	$(Xe)4f^{14}5d^{10}$	$^{0}6s^{2} 6p^{4}$			${}^{3}P_{2}$	8.414
85	At	Astatine	$(Xe)4f^{14}5d^{10}$	$6s^2 6p^5$			${}^{2}P_{3/2}$	
86	\mathbf{Rn}	Radon	$(Xe)4f^{14}5d^{11}$	$^{5}6s^{2} 6p^{6}$			$^{1}S_{0}$	10.7485
87	\mathbf{Fr}	Francium	(Rn)	7s			${}^{2}S_{1/2}$	4.0727
88	\mathbf{Ra}	Radium	(Rn)	$7s^2$			${}^{1}S_{0}$	5.2784
89	Ac	Actinium	(Rn) 6d	$7s^2$			$^{2}D_{2/2}$	5.17
90	Th	Thorium	$(Rn) = 6d^2$	$7s^2$			$^{3}F_{2}$	6.3067
91	Pa	Protactinium	$(Rn)5 f^2 6d$	$7s^2$	А		4K11/0*	5.89
92	U	Uranium	$(Rn)5f^{3}6d$	$7s^2$	c		⁵ Le*	6.1941
93	Np	Neptunium	$(Rn)5f^4$ 6d	$7s^2$	t		⁶ L11/2*	6.2657
94	Pu	Plutonium	$(Rn)5f^6$	$7s^2$	i		$7_{F_0}^{7_{F_0}}$	6.0260
95	\mathbf{Am}	Americium	$(Rn)5f^7$	$7s^2$	n		⁸ S _{7/2}	5.9738
96	\mathbf{Cm}	Curium	$(Rn)5f^7$ 6d	$7s^2$	1		⁹ D ₂	5.9914
97	$\mathbf{B}\mathbf{k}$	Berkelium	$(Rn)5f^9$	$7s^2$	a		$^{6}H_{15/2}$	6.1979
98	Cf	Californium	$(Rn)5f^{10}$	$7s^2$	s		⁵ I8	6.2817
99	\mathbf{Es}	Einsteinium	$(Rn)5f^{11}$	$7s^2$			$4I_{15/2}$	6.42
100	\mathbf{Fm}	Fermium	$(Rn)5f^{12}$	$7s^2$			${}^{3}H_{6}$	6.50
101	Md	Mendelevium	$(Rn)5f^{13}$	$7s^2$			${}^{2}F_{7/2}$	6.58
102	No	Nobelium	$(Rn)5f^{14}$	$7s^2$			${}^{1}S_{0}$	6.65
103	\mathbf{Lr}	Lawrencium	$(Rn)5f^{14}$	$7s^2 7p?$			${}^{2}P_{1/2}?$	4.9?
104	Rf	Rutherfordium	$(\operatorname{Rn})5f^{14}6d^2$	$7s^2?$			${}^{3}F_{2}?$	6.0?

 * The usual LS coupling scheme does not apply for these three elements. See the introductory note to the NIST table from which this table is taken.

8. Many electron atoms

Need a suitable wave function to describe such N-electron atomic systems, $N \ge 2$.

Consider perturbation approach. Split Hamiltonian in the following way:

$$\begin{aligned} \hat{H} &= \hat{H}_0 + \hat{V} \\ \text{where} \qquad \hat{H}_0 &= -\frac{\hbar^2}{2m} \sum_{i=1}^N \vec{\nabla}_i^2 - Ze^2 \sum_{i=1}^N \frac{1}{r_i} \\ \hat{V} &= e^2 \sum_{i>j=1}^N \frac{1}{r_{ij}} \end{aligned}$$

 \mathbf{H}_0 represents the unperturbed problem of N electrons which do not interact with each other (only with the nucleus) and \mathbf{V} is the perturbation which accounts for the electron-electron interaction via Coulomb's Law

It is convenient to write:

$$\hat{H}_{0} = \sum_{i=1}^{N} \hat{H}_{i}$$
$$\hat{H}_{i} = -\frac{\hbar^{2}}{2m} \vec{\nabla}_{i}^{2} - Z \frac{e^{2}}{r_{i}}$$

This means the unperturbed Hamiltonian can be written as a sum of H-like Hamiltonian operators for each individual electron, I, in the atom. We know the solutions:

$$\hat{H}_{i}\phi_{\rho_{i}}(i) = E_{n_{i}}\phi_{\rho_{i}}(i)$$

$$\rho_{i} = \left(n_{i}, \ell_{i}, m_{\ell_{i}}, s_{i} = \frac{1}{2}, m_{s}\right)$$

$$\phi_{\rho_{i}}(i) = R_{n_{i},\ell_{i}}(r_{i})Y_{\ell_{i}}^{m_{\ell_{i}}}(\theta_{i}, \varphi_{i}) \times (\alpha_{i} \text{ or } \beta_{i})$$

$$E_{n_{i}} = -\frac{Z^{2}e^{2}}{2n_{i}^{2}a_{o}}$$

The spatial part of

 ϕ_{ρ_i} namely RY is called an atomic orbital. The complete function (with spin) is called a spin atomic orbital or spinor.

Since $\mathbf{H}^{(0)}$ is separable, the eigenfunctions have the form:

$$\prod_{i=1}^{N} \phi_{\rho_{i}}(i) = \phi_{\rho_{1}}(1)\phi_{\rho_{2}}(2)\cdots\phi_{\rho_{N}}(N) = \Phi_{0} = \text{standard configuration for N-electron}$$
problem.

The corresponding eigenvalues of \mathbf{H}_0 are given by:

$$E^{(0)} = \sum_{i=1}^{N} E_{n_i} = -\frac{Z^2 e^2}{2a_o} \left(\frac{1}{n_1^2} + \frac{1}{n_2^2} + \dots + \frac{1}{n_N^2}\right)$$

Consider the case of the Helium atom. It is very similar to the hydrogen atom except that we have a Z=+2e nuclear charge.

The Hamiltonian where the electron-electron repulsion term is neglected is:

$$\hat{\mathbf{H}} = -\frac{\hbar^2}{2m_e} \nabla_1^2 - \frac{\hbar^2}{2m_e} \nabla_2^2 - \frac{Ze^2}{|\mathbf{r}_1|} - \frac{Ze^2}{|\mathbf{r}_2|} + \frac{e^2}{|\mathbf{r}_{12}|}$$

If we assume the particles are non-interaction then the resulting Schrodinger Equation is separable and we can write the Hamiltonian and wave function as:

$$\hat{\mathbf{H}} = \hat{\mathbf{H}}_1 + \hat{\mathbf{H}}_2$$

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2}) = \Psi(1,2) = \Psi(1)\Psi(2)$$

This a **product wave function** again is only exact if the electrons are non-interacting

With this approximation the energy of the system is given by:

$$\mathbf{E} = \mathbf{E}_{\mathbf{n}_{1}}^{1} + \mathbf{E}_{\mathbf{n}_{2}}^{2} = -\frac{\mathbf{Z}^{2}}{\mathbf{n}_{1}^{2}} \frac{\mathbf{e}^{2}}{2a_{o}} + -\frac{\mathbf{Z}^{2}}{\mathbf{n}_{2}^{2}} \frac{\mathbf{e}^{2}}{2a_{o}} \qquad \mathbf{n}_{1} = 1, 2, 3... \& \mathbf{n}_{2} = 1, 2, 3...$$

How good is this approximation? We can compare the ground state energy of the independent electron helium atom and compare it to that determined experimentally.

$$E_{o}(H \text{ with } Z=2) = -54.4 \text{ eV}$$

$$E_{o}(He) = -54.4 - 54.4 = -108.8 \text{ eV}$$

The true value is -79.0 eV. Thus the independent electron approximation is surprisingly good; i.e., it is in the right order of magnitude.

$\Psi(1,2)$ versus $\Psi(1)\Psi(2)$ - What's the Difference?

Consider a two electron system. The true many electron wave function should indicate that:

The probability of finding the electron at \mathbf{r}_1 , should depend on where the other electron is.

Does the product wave function account for this?

NO

Lets examine this a bit more closely.

$$P(\mathbf{r}_{1},\mathbf{r}_{2}) = \Psi(\mathbf{r}_{1},\mathbf{r}_{2})^{*}\Psi(\mathbf{r}_{1},\mathbf{r}_{2}) = |\Psi(\mathbf{r}_{1},\mathbf{r}_{2})|^{2}$$

Expressing the many-electron wave function as a product wave function we have:

$$P(\mathbf{r}_{1},\mathbf{r}_{2}) = \Psi_{1}(\mathbf{r}_{1})^{*}\Psi_{2}(\mathbf{r}_{2})^{*}\Psi_{1}(\mathbf{r}_{1})\Psi_{2}(\mathbf{r}_{2})$$
$$= |\Psi_{1}(\mathbf{r}_{1})|^{2}|\Psi_{2}(\mathbf{r}_{2})|^{2} = P_{1}(\mathbf{r}_{1})P_{2}(\mathbf{r}_{2})$$

These are independent functions

The probabilities are independent, so can these type of approximate wave functions account for any electron-electron repulsion? No but...

Although the product wave function is only EXACT for non-interacting particles, the approximation does allow us to approximately include the effect of the electron-electron interaction (by perturbation theory).

The product wave function approximation of the many electron wave function can be a very good approximation. It is the most widely used approximation used in research involving calculations in chemistry.

Average Shielding Approximation

In this approximation, we assume the effect of the other electron is to shield the nuclear charge from the other electron.

Consider our electron out here

The charge distribution of the other electron 'shields' the nuclear charge from the other electron.

Within the independent electron approximation, we can therefore do better than just using Z by defining an effective nuclear charge, Z_{eff}

$$\mathbf{E} = -\frac{Z_{\text{eff}}^2}{{n_1}^2} \frac{\mathbf{e}^2}{2a_o} - \frac{Z_{\text{eff}}^2}{{n_2}^2} \frac{\mathbf{e}^2}{2a_o}$$

What is the value of Z_{eff} ?

Consider both electrons in their ground 1s state.

In fact, it should be a function of r such that $Z_{eff} = Z_{eff} (r)$

There are many ways of estimating the effective nuclear charge Z_{eff} from calculation and experimental data.

$$E_{He} = -\frac{Z_{eff}^2}{n_1^2} \frac{e^2}{2a_o} - \frac{Z_{eff}^2}{n_2^2} \frac{e^2}{2a_o}$$

For example, given that experimental the first ionization potential of He is 24.6 eV, find an estimate for Z_{eff}

Use:
$$\frac{e^2}{a_o} = 1$$
 Hartree = 27.211 eV
 $\therefore 24.6 = \frac{Z_{eff}^2 e^2}{2a_o} = \frac{Z_{eff}^2 \cdot 27.211}{2}$
 $\Rightarrow Z_{eff} = 1.34$

A better estimate involving a calculation of $\langle H \rangle$ yields $Z_{eff}^2 = 1.6875$

Will see that shielding determines many trends associated with the Periodic Table