
ElectronElectron--electron repulsion!electron repulsion!

In the previous independent electron approximations the electron-electron 
repulsion term was completely neglected.  Now an approximation for the electron-
electron repulsion interaction energy  will be obtained.

We still assume the independent electron model, but we try to improve the total 
energy of the He atom by evaluating the electron-electron interaction energy 
calculated from the unperturbed wave functions.

|Y1s|2

Calculate the classical interaction 
energy between two charge clouds  

|Y1s|2

unperturbed densities
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where J12 is the estimate for the electron-electron repulsion energy.  
(The symbol J is used out of convention)

How do we calculate JHow do we calculate J1212??

Let us look at the Hamiltonian for the Helium atom.
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Electron-electron repulsion part of the potential energy

Let’s calculate the expectation value using the unperturbed wave functions!
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The expectation value is given by:  (Assuming normalization)
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Using our unperturbed product wave function:

|Y1s(2)|2|Y1s(1)|2

Multiplicative 
operator so we can 

rearrange.

electron-electron repulsion 
energy, using the unperturbed 
wave functions.
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The unperturbed, non-interaction one-electron wave functions are given by the 
hydrogen-like wave functions with Z=2:
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We won’t go through the work in evaluating this integral. The r12
-1

terms makes it tricky. You can see why by examining Karplus and 
Porter, pages 172-178.



Now we have an approximate expression for our total energy
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This compares to the experimental value of -79.0 eV.  The electron-electron term 
accounts for 34 eV.  Without the electron-electron repulsion term, the 
independent electron approximation gives a energy of -108.8 eV.

We are getting there. Now we are only 4.2 eV off or 5% in error!



Electrons has s = ½,and therefore are fermions, and obey the Pauli Exclusion 
Principle (PEP).

Proper many electron atoms requires usingProper many electron atoms requires using
Slater DeterminantsSlater Determinants

This will allow us to calculate energies and properties of many electron systems



Since we are dealing with fermions, the wave function must be antisymmetrical with 
respect to all transpositions (exchanges)  of the N identical particle labels.

For example: if Ψ(1,2,3,…,N) → Ψ(2,1,3,…,N)
then Ψ(2,1,3,…,N) = - Ψ(1,2,3,…,N) 

This can be assured by writing the wave function as a Slater Determinant

Columns: wave functions each 
electron can occupy
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N assures that the total wave function is normalized.

Each column is an orbital and the number in brackets is one of the N electrons
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Interchange two electron labels (a switch of rows) yields a negative wave function 
as required for fermions and by the Pauli Exclusion Principle. 

The determinant is zero if any row or column are identical.



Consider Helium again

The Slater determinant for the 1s2 ground state is:
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in the 1s orbital. If α = β or vice 
versa, the determinant = 0

( ))1()2()2()1()2(1)1(1
2
1 βαβα −= ss

Spatially symmetric Spin antisymmetric

What about the excited state configuration 1s2s?  Possible states are 3S and 1S, and 
Hund’s rules state that the 3S lies lower in energy.

Let’s explore the stability of the triplet state relative to the singlet state.



The wave functions will be of the form:
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However the PEP states the wave function must be antisymmetric. Therefore
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Spatially antisymmetric Spin symmetric
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Spatially symmetric Spin antisymmetric



Examine the spatial function carefully:

Let x1, y1, z1 = x2, y2, z2 = x, y, z

0)zy,x,(2)zy,x,(1)zy,x,(2)zy,x,(1spatial
3 =−= ssssS

but

)zy,x,(2)zy,x,(21)zy,x,(2)zy,x,(1)zy,x,(2)zy,x,(1spatial
1 ssssssS =+=

In the first case, there is zero probability that with identical spins, the two electrons will be 
in the same physical space = Fermi hole

In the second case, the probability quadruples [1S]2 for finding the electrons in 
the same physical space = Fermi heap

Fermi holes and heaps do not come about because of electron-electron repulsion but 
because of the exchange symmetry of the wave  function. However, Fermi holes and heaps 
lead to reduced and enhanced electron  – electron repulsion energies, respectively.
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