
Next consider Li. Assume because Li has 3 electrons that its ground state electronic 
configuration is given by 1s3.

Slater Determinant becomes:
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= where the 3rd e- has either α (or β) spin

However, the 1st and 3rd columns in this determinant are identical, so Ψ(1,2,3) =0. 

Thus, the 3rd e- must go into the next higher energy orbital with n = 2.

⇔ Each orbital have a maximum occupancy of two electrons.

= Pauli Exclusion Principle.



Use of Slater Determinants is a course in itself. Will only consider first excited 
state of He (N = 2) to introduce the concepts of exchange and Coulomb 
energies.
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This is one of 3 degenerate possibilities for the excited 3S triplet state (both spins up).

Calculate 
<Φ0|V|Φ0>
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Integrals (1) and (2) represent the electrostatic Coulomb interaction between the  1s and 
2s charge clouds. In (1) electrons 1 and 2 occupy the 1s and 2s orbitals, respectively, 
while in (2) electrons 1 and 2 occupy the 2s and 1s orbitals, respectively. Both integrals 
correspond to the same energy because electrons are indistinguishable. 

These are “classical” electrostatic interactions since e|Ψ|2 is a charge distribution.

Each integral contributes J/2 to the energy.



Integrals (3) and (4) have a similar form but are not the interactions of two charge 
clouds since 1s(1)2s(1) and 1s(2)2s(2) are not probability densities in the usual sense.
Instead they arise from an exchange of the two electrons between the 1s and 2s 
orbitals. As a result the integrals are called exchange integrals, K.  (3) and (4) contribute 
K/2 to the energy.

The energy of the first excited triplet state in He is therefore E= E0+J-K
where E0 is the energy uncorrected for e- - e- interactions.

How about the singlet state?  

One guess for the Slater determinant is:
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Another is:

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }12212211

2
1

2221
1211

2
1 αβαβ

αβ
αβ

ssss
ss
ss

−=



The correct form of the excited singlet state of He can be written in Slater 
Determinant form as: 
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Can then show that E = E0+J+K

What are the signs of J and K?

The integrand of J is positive everywhere, and so J is positive. Makes sense since the 
electrostatic interaction between two electron cloud distributions is repulsive.

The integrand of K has both positive and negative contributions. For K to be negative, 
the electron radius r1 or r2 must be inside the 2s orbital nodal surface while the other is 
outside this distance.



e- (2) or (1) here

e- (1) or (2) here

Then integrand of K is negative



However, the 1/r12 term weights those regions with smaller r12. 
Therefore K overall is a positive quantity.

In addition to always being positive the exchange integral, K, always enters with a 
negative sign.  Therefore, it always acts to diminish the electron-electron repulsion 
energy.

The exchange energy is always much smaller than the associated Coulomb repulsion 
energy.

In He exchange interaction splits the degeneracy of the singlet and 
triplet states by an amount = 2K

Note: Hund’s Rules OK here. The triplet lies lower than the singlet.

no electron interaction exchange interactionCoulomb interaction

3E = E0+J-K

1E = E0+J+K

2K
E0+J

J
E0



8.1: The Hartree8.1: The Hartree--Fock SelfFock Self--Consistent Field MethodConsistent Field Method
In the many-e- atom problem we want to find the singlesingle Slater determinant that gives the 
lowest energy for the ground-state. The starting point is to use the orbital approximation, 
the Hartree method, and the Pauli Exclusion Principle. 

The Hartree-Fock method assumes the electrons are uncorrelated

A particular e- feels spatially averaged e--charge distribution of the 
remaining n-1 e-s. ⇒ the n-electron Schrodinger Eq. ⇒ n 1-e- Schrodinger Eq.
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The effective potential Vi
eff is spherically symmetric by 

averaging the total probability density over the angular 
coordinates – known as the central field approximation

The angular part of the wave function is identical to the solution of the H-atom
⇒ The s,p,d.. orbital nomenclature derived for the H-atom remains intact for the 1-e orbitals 
What remains is to find solutions to the radial part of the Schrodinger Equation. Optimize 
the radial part using the variational method


