
8.2:8.2: An aside: Variational Theory, another approximation methodAn aside: Variational Theory, another approximation method

= an approximation method which works even when perturbation theory fails.
Especially useful and important for many-electron systems.
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Approximate energy of the system

“any” normalized function of the coordinates of the system including spin.
= trial wave function which must satisfy the usual QM boundary conditions.

Lowest energy eigenvalue for the system (ground state)



Proof:Proof:
Derivation aheadDerivation ahead

oψψ =~
(1)  Set = exact ground state wave function.
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oψψ =~ exactlyi.e. the theorem holds for

oψψ ≠~ which is usually the case(2) When

Will use our theorem that any arbitrary function can be expressed as an 
expansion in a complete basis set.

Use expansion postulate to expand ψ~ in terms of a complete set of eigenfunctions of H.
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Of course, if we actually new the exact wave functions of H then we would not be 
dealing with any approximation method. However, this is a formality we need to 
prove the theorem.

ψ~Require to be normalized
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Subtract Eo from both sides
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But Ek ≥Eo for all k since Eo is the 
ground state energy. Note as well that 
|ak|2 ≥0 for all k.



This theorem is the basis of the variational method for calculating approximate 
wave functions and energies of many electron atoms and molecules

Note: The theorem holds for the lowest energy 
state for each state of a given symmetry, if 

ψ~ is chosen to have the correct symmetry; for example, the lowest s 
state, p state, d state etc.
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Variational MethodVariational Method
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where {fi} are functions that satisfy the general conditions 
for a wave function. They may be constitute an 
orthonormal set or they may not.  
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where
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Hji is a Hamiltonian matrix element and Sji is an overlap integral

Rearrange (2) such that
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We want coefficients {c} that make E a minimum. We can do 
this by differentiating (3) with respect to ck and setting 0=
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Do the case for i,j = 1,2
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Differentiate with respect to c1
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Similarly, differentiation with respect to c2 yields:
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Set and rearrange to show:
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This will have non-trivial {ci} solutions if the following determinant = 0.
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= SECULAR EQUATION (like before)



For N basis functions, the secular equation is given by:
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The secular equation yields a Nth order polynomial in E. For each E can solve for 
{ci} to get the “best” approximate wave function for the system having that E.



Back to the problem:

8.3: Optimization of the Radial Part by the Variation Method8.3: Optimization of the Radial Part by the Variation Method

What function should we use for the individual entries, φi(k) in the 
determinant? Instead of the H-atom eigenfunctions, we use modified 
functions. The key difference in the modified functions from the H-atom 
functions

Effective nuclear charge Zeta Effective nuclear charge Zeta ((ζζ) < the true nuclear charge) < the true nuclear charge

The outermost electrons are shielded shielded from the full nuclear charge by 
other electrons. Each 1-e- orbital is constructed from a linear combination 
of H-atom-like orbitals. All coefficients in the linear combination in each 
orbital are used as variational parameters. The ζ values are optimized 
separately.



Next: solve the Schrodinger Equation for each electron i.  To do so, we must know
Vi

eff .  This means that we must know the functional forms of all the other orbitals, also the 
case for the remaining n-1 electrons.   That is, the answers must be known to solve the 
problem.

The way out of this quandary is to use an iterative approach.

● Make a reasonable guess for an initial set of orbitals

● Calculate an effective potential using these orbitals

● Calculate the energy and orbital functions for each of the n electrons in turn

● New orbitals are used to refine the initial guesses

Repeat until the solutions for the energies and the orbitals are self-consistent


