1.5: The Expansion Theorem

Any arbitrary function of coordinates and time Q(X, y, Z, t)
can be represented exactly in terms of the eigenfunctions {¢| }

(in the same coordinate/time space) of a self-adjoint operator.

— () can be written as a linear combination of the eigenfunctions which are said
to form a complete set, {P.}.

— Q(Xa y: Zat) — Zci¢i (Xa y: Zat)
i=1

The {c.} are coefficients to be determined, and {®.} are orthonormal with
real eigenvalues since the generating operator is Hermitian.

3-D vector correspondence

Any vector (S can be written as a linear combination of the orthonormal vectors | , j, K
G=CGI+G,J+G,k

iA, j, k are the basis vectors for G and span the 3-D vector space.
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The complete set {®.}, are said to span a Hilbert space.

Can determine the expansion coefficients by using orthonormality properties.

= ﬁmr;zca |dadr=c, [ dgdr=4,

Thus: C, = j¢:QdT




Can calculate the expectation value of any property when the system is state Q)

Assuming Q is normalized:

I\sz!fl\?lﬂdr
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—ZZC c,m, jqﬁ ¢ d7 = Zc cMJ, = chckmk Z\ck\ m,

Here, m, represents the value of M when system is in state @,

The value of <M> when the system is in a linear combination of all states is the
weighted average of all values in each state.

The weights | ¢, |2 represent the probability that the system is in state @,
Similarly |c, |? = probability of finding m, when property M is measured when system
is in state Q. 3



R ecall that the solutions of the one-dimensional particle in the box solution are:
2 . (nm
Y (x)=,/—sin| —X | n=1,2,3,...
L L

According to the postulate we just invoked, the above wave functions of the
particle in a one-dimensional box form a complete set.

They can be used in the Fourier Series for odd parity periodic functions! We can
even construct nasty functions as below with an infinite series of sine functions.
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We can expand any well behaved one-dimensional periodic function as a
series of sines and cosines! This 1s known as a Fourier series.

f(X)=a, + Z(an cosNX+Db, sinNX) «— complete set!

n=1

We if we use enough sine and cosine functions can represent any periodic well
behaved functions, including those below:

A

v

A
v




m
f(x)=c, sin X f (X) =c, sin X+, sin 3X +C; sin 5X + ¢, sin 7X
A
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L ] li
f (X) =, sin X+C, sin 3X f(X)=c,sinX+C,sin3X+...+C;, sin11x
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1.6: A first look at transition probabilities

When the Hamiltonian is independent of time, the state of the system and
its properties are independent of time

D, E .
S If at t=0 the system 1is in state

P, E; ®, with energy E,, it will
®,, E, remain there unless
®,E, perturbed.

When the system interacts with a time-dependent perturbation; for example,

light A n n
H new (t) = H old +V,Q
[solated molecule External perturbation
Hamiltonian (light, particle
—> stationary state collisions, etc)

Stationary states will be gone: in fact, there will be exchange of population
among these levels = transitions= spectroscopy



Approach mathematically: express time varying system in terms of the original
stationary states; that is, Q(r,t) in terms of {®.(r)}.

= O(r,t) = Zci¢i ()
= C; =C;(1)

= Q(F,1) = ()4 (F)

Here, c,(t) = expansion coefficient, and @, satisfies:

1.) H y(0)®,(r)=E.D,(r)
2.) {®.} form a complete set
3.) {®,} are orthonormal

Obtain c¢,(t) values by solving: |:| Q(F,t) — _z aQé: ’ t)
|

subject to initial conditions



In the old-stationary state expansion |c,|? = probability that the expectation
value of an observable M would be m..

Now |6 = ¢/ (t)c; (1)

= probability of finding system in state @, at time t
= probability that transitions occur into/out of state P,
= transition probability



1.7: Introduce bra-ket notation: for an operator M

The integral

My = [aMy,dz =y, M |y, ) =(m[M |n)

s Y =Yg ) =M w = (v [=(m|
wi Jwawade =y, lv,)=(mn)=36,,

i G =(d |Q)=(k|Q)

Will use this notation throughout the course.
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