2.1 Approximation Methods

General approach to perturbation theory

N

H is complicated and difficult to solve. Therefore write
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which can be which is treated
solved by itself as a perturbation

Use solutions to H® in H to get approximate solutions to H

Approximations differ mathematically depending on whether solutions to
H© give states with degenerate (equal) energies or not, or if the perturbation
is time dependent



Three cases

[: non-degenerate, time independent perturbation theory

[I: degenerate, time-independent perturbation theory

[II: time-dependent perturbation theory
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2.2: Non-degenerate Time Independent Perturbation Theory

e Ap()=(HO+H ()

Here H | is independent of time

Assume we know solutions to the unperturbed problem

7(0),,,(0) _ =(0), (0
H w —Eq W,

q
Eigenvalue problem — quantum numbers = q’s
Require that each W q<0) has a different E q(o)

This implies we are dealing with non-degenerate energy levels; for example,
A 1-D particle in a box or a 1-D simple harmonic oscillator.



To get approximate solution to HA wq — E qw v
e H=H© 4+ 2H®
e AO1AY)-E b =0 @

Here A is an arbitrary counting parameter which keeps track of where the
perturbation is in the result. Will set A = 1 later.

Note: Ilm Eq — Eéo) = non-degenerate energy for H
A—0
lIm =¥ = eicenfuncti fHO for E ©
and 0 Wq Wq = eigenfunction o or E_



Will get W and E_ as Taylor series
E :E(°)+/1E(1)+12E(2)+13E(3)+
4 4 G 4 g

W ™ and E ® are the n®-order corrections to W ) and E ), respectively.
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Substitute expansions into Eq. (1) and collect terms proportional to A
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Collect terms in A
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Set A = 1 and each term in the expansion =0);
that is, define the n™ order perturbed Was the solution to the differential equation
obtained by setting the coefficient of each power of A=0.

(I) (H ©) — EéO) )//(50) — O Defines LPq(O) and Eq(o)

= zero™ order problem = unperturbed problem. known

(1) (f) E;’ )V/(O) (T(O) E; )l//(l) =0 Defines W and E ()
\ \

known known known known

unknown unknown

Since (i) is known, use (i1) to get E q<1)



e " .
Premultiply (i) ¥ ©” and integrate.

— <W(§°) | (|_‘| 0 Eél))l WéO)>+<W(§O) (RO _ EO)) Wél)> 0
0= <Wéo) | Ho |W(§O)>_Eél) <W<§O) |l//(§o)> 4 <W<§O) | H© |l//(§1)>—E(§O) <';”(§O) |Wél)>

0= <W<§O) IO W§0)> —E® +< H Oy l//él)> —E0 <W§,O) | W§1)>

Self-adjoint
0=y 1010+ EPlyPIVE) £ 1vt)

CEQ /0 @, 0
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15t order correction to the energy is given by first order perturbation of H
operating on 0™ order wave function.

Now, everything in (i) is known except for ¥ (!
Solution of differential equation (ii) gives ¥ q(l)
LATER

To get 2" order correction to the energy, examine term to 2" order in A; that is A2

(iii ) (I:IT(O) (0>}V<2>+( 1) _ (1)}//(1) Q(O):O

known known \ known Now known from (ii) unknown

unknown known
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