$1^{\text {st }}$ order correction to the energy is given by first order perturbation of \mathbf{H} operating on $0^{\text {th }}$ order wave function.

Now, everything in (ii) is known except for $\boldsymbol{\Psi}_{\mathrm{q}}{ }^{(1)}$. Solution of differential equation (ii) gives $\boldsymbol{\Psi}_{\mathrm{q}}{ }^{(1)}$.
LATER

To get $2^{\text {nd }}$ order correction to the energy, examine term to $2^{\text {nd }}$ order in λ; that is λ^{2}

Premultiply by $\boldsymbol{\Psi}_{\mathrm{q}}{ }^{(0)^{\star}}$ and integrate

$$
\begin{gathered}
E_{q}^{(2)}=\left\langle\psi_{q}^{(0)}\right| \hat{H}^{(0)}\left|\psi_{q}^{(2)}\right\rangle-E_{q}^{(0)}\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(2)}\right\rangle+\left\langle\psi_{q}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(1)}\right\rangle-E_{q}^{(1)}\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(1)}\right\rangle \\
E_{q}^{(2)}=\left\langle\hat{H}^{(0)} \psi_{q}^{(0)} \mid \psi_{q}^{(2)}\right\rangle-E_{q}^{(0)}\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(2)}\right\rangle+\left\langle\psi_{q}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(1)}\right\rangle-E_{q}^{(1)}\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(1)}\right\rangle \\
\mathbf{H}^{(0)} \text { is self-adjoint } \\
E_{q}^{(2)}=E_{q}^{(0)}\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(1)}\right\rangle-E_{q}^{(0)}\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(2)}\right\rangle+\left\langle\psi_{q}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(1)}\right\rangle-E_{q}^{(1)}\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(1)}\right\rangle \\
\therefore E_{q}^{(2)}=\left\langle\psi_{q}^{(0)}\right|\left(\hat{H}_{q}^{(1)}-E_{q}^{(1)}\right)\left|\psi_{q}^{(1)}\right\rangle
\end{gathered}
$$

Once $\mathrm{E}_{\mathrm{q}}{ }^{(2)}$ is known, (iii) can be solved for $\Psi_{\mathrm{q}}{ }^{(2)}$. Then $3^{\text {rd }}$ order problem can be treated, etc.

A subtlety with benefits

The perturbed wave functions are not completely specified by solving differential equations (ii) and (iii).

The $\left\{\boldsymbol{\Psi}_{\mathrm{q}}{ }^{(\mathrm{n})}\right\}$ are arbitrary within $\pm{ }_{c} \boldsymbol{\Psi}_{\mathrm{q}}{ }^{(0)}$ where c is a constant. While $\Psi_{\mathrm{q}}{ }^{(1)}$ is a solution of (ii), $\Psi_{q}{ }^{(1)} \pm c \Psi_{q}{ }^{(0)}$ is also a solution.

$$
\begin{aligned}
& \left(\hat{H}^{(0)}-E_{q}^{(0)}\right)\left(\psi_{q}^{(1)} \pm c \psi_{q}^{(0)}\right)=\left(\hat{H}^{(0)}-E_{q}^{(0)}\right) \psi_{q}^{(1)} \pm c\left(\hat{H}^{(0)}-E_{q}^{(0)}\right) \psi_{q}^{(0)} \\
= & \left(\hat{H}^{(0)}-E_{q}^{(0)}\right)\left(\psi_{q}^{(1)} \pm c \psi_{q}^{(0)}\right)=\left(\hat{H}^{(0)}-E_{q}^{(0)}\right) \psi_{q}^{(1)} \pm c\left(E_{q}^{(0)}-E_{q}^{(0)}\right) \psi_{q}^{(0)}
\end{aligned}
$$

However, the perturbed energies are independent of ${ }_{c} \boldsymbol{\Psi}_{\mathrm{q}}{ }^{(0)}$
For example: $\quad E_{q}^{(2)}=\left\langle\psi_{q}^{(0)}\right|\left(\hat{H}^{(1)}-E_{q}^{(1)}\right)\left|\psi_{q}^{(1)} \pm c \psi_{q}^{(0)}\right\rangle$

$$
\begin{gathered}
\left.=\left\langle\psi_{q}^{(0)}\right|\left(\hat{H}^{(1)}-E_{q}^{(1)}\right)\left|\psi_{q}^{(1)}\right\rangle \pm c \mid\left\langle\left\langle\psi_{q}^{(0)}\right| \hat{H}^{(1)} \mid \psi_{q}^{(0)}\right\rangle-E_{q}^{(1)}\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(0)}\right\rangle\right] \\
=\mathrm{E}_{\mathrm{q}}^{(1)}
\end{gathered}
$$

This arbitrary feature of $\Psi_{q}{ }^{(1)}$ can be removed by requiring that $\Psi_{q}{ }^{(1)}$ be orthogonal to $\Psi_{q}{ }^{(0)}$

$$
\Rightarrow\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(1)}\right\rangle=0 \quad \text { This simplifies } \mathrm{E}_{\mathrm{q}}^{(2)}
$$

$$
E_{q}^{(2)}=\left\langle\psi_{q}^{(0)}\right|\left(\hat{H}^{(1)}-E_{q}^{(1)}\right)\left|\psi_{q}^{(1)}\right\rangle=\left\langle\psi_{q}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(1)}\right\rangle-E_{q}^{(1)}\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(1)}\right\rangle
$$

$$
\therefore E_{q}^{(2)}=\left\langle\psi_{q}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(1)}\right\rangle
$$

$2^{\text {nd }}$ order correction to the energy depends on first order perturbation acting on $1^{\text {st }}$ order wave function.

Solving the Differential Equation (ii) to find $\Psi_{q}{ }^{(1)}$

Do we know $\Psi_{q}{ }^{(1)}$? \quad Yes (in principle)
Examine (ii) again: $\quad\left(\hat{H}^{(1)}-E_{q}^{(1)}\right) \psi_{q}^{(0)}+\left(\hat{H}^{(0)}-E_{q}^{(0)}\right) \psi_{q}^{(1)}=0$

Problem: Getting $\Psi_{q}{ }^{(1)}$ from differential equation is not trivial!
Solution: Try a different method.
Spectral Approach

Remember: we know $\quad \hat{H}^{(0)} \psi_{q}^{(0)}=E_{q}^{(0)} \psi_{q}^{(0)}$
Since $H^{(0)}$ is self-adjoint, $\left\{\Psi_{q}{ }^{(0)}\right\}$ provides a complete orthonormal set of wave functions

$$
\text { Let } \quad \psi_{q}^{(1)}=\sum_{n} a_{n} \psi_{n}^{(0)} \quad \text { Solve for } a_{n} \text { to get } \Psi_{q}^{(1)}
$$

First: $\quad\left\langle\psi_{q}^{(0)} \mid \psi_{q}^{(1)}\right\rangle=0 \quad$ This means $\mathrm{a}_{\mathrm{q}}=0$
Therefore: $\quad \psi_{q}^{(1)}=\sum_{n} a_{n} \psi_{n}^{(0)} \quad n \neq q$
Reexamine (ii) $\quad\left(\hat{H}^{(1)}-E_{q}^{(1)}\right) \psi_{q}^{(0)}+\left(\hat{H}^{(0)}-E_{q}^{(0)}\right) \psi_{q}^{(1)}=0$
but $\quad \psi_{q}^{(1)}=\sum_{n} a_{n} \psi_{n}^{(0)}$

$$
\therefore\left(\hat{H}^{(1)}-E_{q}^{(1)}\right) \psi_{q}^{(0)}+\left(\hat{H}^{(0)}-E_{q}^{(0)}\right) \sum_{n} a_{n} \psi_{n}^{(0)}=0
$$

Premultiply by $\Psi_{k}{ }^{(0) \star}$ and integrate

$$
\begin{gathered}
\left.0=\left\langle\psi_{k}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(0)}\right\rangle-E_{q}^{(1)}\left\langle\psi_{k}^{(0)} \mid \psi_{q}^{(0)}\right\rangle+\sum_{n} a_{n}\left\langle\left\langle\psi_{k}^{(0)}\right| \hat{H}^{(0)} \mid \psi_{n}^{(0)}\right\rangle-E_{q}^{(0)}\left\langle\psi_{k}^{(0)} \mid \psi_{n}^{(0)}\right\rangle\right\} \\
\therefore 0=\left\langle\psi_{k}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(0)}\right\rangle-E_{q}^{(1)} \delta_{k q}+\sum_{n} a_{n}\left\{E_{n}^{(0)} \delta_{k n}-E_{q}^{(0)} \delta_{k n}\right\}
\end{gathered}
$$

$$
0=\left\langle\psi_{k}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(0)}\right\rangle-E_{q}^{(1)} \delta_{k q}+a_{k}\left\{E_{k}^{(0)}-E_{q}^{(0)}\right\} \quad \text { with } \mathrm{a}_{\mathrm{q}}=0
$$

A: when $\mathrm{k}=\mathrm{q}, \delta_{\mathrm{kq}}=1 \quad E_{q}^{(1)}-E_{q}^{(1)}+a_{q}(0)$ Therefore, no information on a ${ }_{q}$

B: when $\mathrm{k} \neq \mathrm{q}, \delta_{\mathrm{kq}}=0$

$$
a_{k}=-\frac{\left\langle\psi_{k}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(0)}\right\rangle}{E_{k}^{(0)}-E_{q}^{(0)}}
$$

For simplicity introduce the symbol $\quad H_{k q}^{(1)}=\left\langle\psi_{k}^{(0)}\right| \hat{H}^{(1)}\left|\psi_{q}^{(0)}\right\rangle$

Called a matrix element (MORE LATER)

$$
\therefore a_{k}=-\frac{H_{k q}^{(1)}}{E_{k}^{(0)}-E_{q}^{(0)}} \quad k \neq q
$$

$$
\psi_{q}^{(1)}=\sum_{k \neq q} a_{k} \psi_{k}^{(0)}=\sum_{k \neq q} \frac{H_{k q}^{(1)}}{E_{q}^{(0)}-E_{k}^{(0)}} \psi_{k}^{(0)}
$$

$=$ an infinite sum
If we are dealing with the ground state: $q=1$, then the total wave function is given by:

$$
\approx \psi_{1}^{(0)}+\underbrace{a_{2} \psi_{2}^{(0)}+a_{3} \psi_{3}^{(0)}+a_{4} \psi_{4}^{(0)}+a_{5} \psi_{5}^{(0)}+a_{6} \psi_{6}^{(0)}} \cdots
$$

Please note that the changing subscript refers to the quantum number, not the order of the correction. This summation, combined is the first order correction.

The perturbed wave function ψ becomes the unperturbed wave function plus contributions from excited states.

The effect of the perturbation is to 'mix-in' contributions from other states!

Pictorial Example: Let us consider the hydrogen atom in the ground state with a spherical charge distribution.

Let us now add a uniform electric field in the z-direction as to perturb the system:
New perturbed wave function
original unperturbed

wave function

Let us look at the correction term again:

$$
\psi_{q} \approx \psi_{q}^{(0)}+\sum_{k \neq q} \frac{<\underbrace{\psi_{\mathrm{k}}^{(0)}\left|\hat{H}^{(1)}\right| \psi_{\mathrm{q}}^{(0)}>}_{a_{\mathrm{k}}} \underbrace{E_{\mathrm{q}}^{(0)}-E_{\mathrm{k}}^{(0)}}_{\mathrm{k}}}{\psi_{\mathrm{k}}^{(0)}}
$$

The larger the magnitude of a_{k} the more that state contributes.

$$
E_{\mathrm{q}}^{(0)}-E_{\mathrm{k}}^{(0)}
$$

The denominator tells us that the greater the energy separation, the smaller the contribution. In other words, the most important contributions come from the states nearest in energy.

Thus, for the ground state, the first few excited states will 'mix-in' the most.

$$
\psi_{1} \approx \psi_{1}^{(0)}+a_{2} \psi_{2}^{(0)}+a_{3} \psi_{3}^{(0)}+a_{4} \psi_{4}^{(0)}+a_{5} \psi_{5}^{(0)}+a_{6} \psi_{6}^{(0)} \cdots
$$

