
Use the result for ψ(1)

 

to derive an expression for Eq
(2)
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Note: if q is the ground state then Eq
(2)

 

< 0 always.



Review: the Classical Harmonic OscillatorReview: the Classical Harmonic Oscillator
•

 

It is the simplest model for molecular vibration
–

 

The simplest case to consider is a diatomic molecule 
with two atomic masses,

 

m1

 

and m2

 

.

–

 

At low vibrational energies, the potential energy of the 
molecular bond is approximately symmetric with 
respect to the bond length at rest and the vibration of 
such a molecule obeys the equations of simple 
harmonic motion. 

The equation for simple harmonic motion:

For a system with more than one mass, we must replace 
the mass m in the spring equation with a reduced 
mass

 

μ, given by
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Mathematically 
equivalent, but simpler
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Review: QM Harmonic OscillatorReview: QM Harmonic Oscillator

•

 

The potential energy of an Harmonic oscillator

•

 

The Schrodinger equation for the system is therefore

•

 

The eigenfunctions are Hermite

 

polynomials, Hn

 

(α1/2x)

e.g.,

•

 

The eigenvalues, or the total energy E  
–

 

v is the vibrational quantum number 
–

 

νo

 

is the frequency of oscillator or the vibrational frequency
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•

 

The quantized energy levels for the harmonic oscillator are equidistant

 

from one 
another.

•

 

The lowest possible energy, corresponding v = 0, E0

 

= 0.5 hνo

–

 

In classical theory a molecule could be undergoing no vibration,

 

but in quantum 
mechanics, this is not allowed

–

 

Even at 0 K, vibration still occurs with energy ½

 

hνo

 

.

 

This is the zero-point 
energy.

–

 

Consistent with Heisenberg Uncertainty principle;  if no vibration occurred, the 
position and momentum of the atoms would both have precise values and this is 
not allowed!
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•

 

The quantum oscillator can penetrate into classically forbidden regions -

 

tunneling.

•

 

The relative percentages of ψ

 

in the classical forbidden regions suggests that the 
tunneling probability decreases as the total vibrational energy increases.
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Recall: Operator Method for Solving Harmonic Oscillator ProblemRecall: Operator Method for Solving Harmonic Oscillator Problem

We defined two operators:
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and H.
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Most relevant operations for nth

 

wave 
function
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Example:Example:

 

Use the spectral results for time-independent perturbation theory to 
find the first and second order corrections to the energy and the first order 
correction to the wave function for the first excited state of a

 

harmonic 
oscillator, |n = 1>,  (frequency = ν

 

and α

 

=0.5) in their simplest forms if the 
perturbation operator is H(1)

 

= x, where x is the displacement coordinate of the 
vibrator.
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Therefore: Hk,1
(1)

 

= 0 unless k = 0 or 2
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Like the first order correction to the wave function Eq
(2)

 

is non-zero for k = 0 and 2
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