More matrix algebra

let $\psi=\sum_{i=1}^{N} c_{i} \phi_{i} \quad\left\{\phi_{i}\right\}$ is the set of N basis functions

$$
\begin{gathered}
\Rightarrow \tilde{A}=\langle\psi| \hat{A}|\psi\rangle=\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}^{*} A_{\mathrm{ij}} c_{j} \quad \sum_{i=1}^{N} c_{i}^{*} c_{i}=1 \quad \Psi_{\text {normal }} \\
A_{\mathrm{ij}}=<\phi_{i}|\hat{A}| \phi_{j}>=\text { matrix element }
\end{gathered}
$$

In matrix notation

$$
\begin{gathered}
\bar{A}=\tilde{c}^{+} \tilde{A} \tilde{c} \quad \tilde{c}^{+} \tilde{c}=1 \\
\tilde{c}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right) \text { column vector } \quad \tilde{C}^{+}=\left(\begin{array}{llll}
c_{1}^{*} & c_{2}^{*} & \ldots & c_{N}^{*}
\end{array}\right) \text { row vector }
\end{gathered}
$$

where

Determinants $\quad|\tilde{A}|=\sum_{i}(-1)^{i+j} a_{i j}\left|A_{i j}\right|$
For a 2 x 2 matrix:

$$
|\tilde{A}|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{22}
$$

For a 3×3 matrix: label each matrix element in the following way (in your mind)
$\tilde{A}=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ (+) & (-) & (+) \\ a_{21} & a_{22} & a_{23} \\ (-) & (+) & (-) \\ a_{31} & a_{32} & a_{33} \\ (+) & (-) & (+)\end{array}\right) \quad$ The $+/-$ are the signs of the cofactors

Can expand the determinant along any row or column. Using the first row:

$$
\begin{gathered}
|\tilde{A}|=a_{11}(-1)^{1+1}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+a_{12}(-1)^{1+2}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}(-1)^{1+3}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
\Rightarrow|\tilde{A}|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{gathered}
$$

For a diagonal matrix where all off-diagonal elements are zero:

$$
\tilde{A}=\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right) \Rightarrow|\tilde{A}|=a_{11} a_{22} a_{33}
$$

Further properties of determinants:

$$
\begin{aligned}
& \left|\tilde{A}^{T}\right|=|\tilde{A}| \\
& \left|\tilde{A}^{*}\right|=|\tilde{A}|^{*} \\
& \left|\tilde{A}^{+}\right|=\left|\tilde{A}^{*}\right|=|\tilde{A}|^{*}
\end{aligned}
$$

More Theorems

1.) A Hermitian matrix \mathbf{H} has "real" eigenvalues
2.) A Hermitian matrix can be diagonalized by a unitary transformation; that is, there is a matrix \mathbf{S} such that:

$$
\tilde{S} \tilde{H} \tilde{S}^{-1}=\tilde{D}
$$

3.) $\left|\tilde{S} \tilde{H} \tilde{S}^{-1}\right|=|\tilde{D}|$

This means the eigenvalues of \mathbf{H} and $\mathbf{S H S}^{-1}$ are equal; that is, the physical content is unaffected by the unitary transformation
4.) If two Hermitian matrices \mathbf{H}_{1} and \mathbf{H}_{2} commute then they can be simultaneously diagonalized (no proof give). This means there is a \mathbf{S} such that:

$$
\begin{aligned}
& \tilde{S} \tilde{H}_{1} \tilde{S}^{-1}=\tilde{D}_{1} \\
& \tilde{S} \tilde{H}_{2} \tilde{S}^{-1}=\tilde{D}_{2}
\end{aligned}
$$

Solution of the eigenvalue problem using complete sets

$=$ Matrix Mechanics

$$
\hat{M} \psi_{i}=m_{i} \psi_{i} \text { or } \hat{M} \psi=m \psi
$$

(1) Could take $\mathbf{M}=\mathbf{H} ; \mathrm{m}=\mathrm{E}$, etc.

In the Schrodinger approach, \mathbf{M} is a differential equation which we solve for the eigenfunctions and eigenvalues. These can involve relatively hard calculus methods.

In the Heisenberg approach, \mathbf{M} is a matrix which we solve for the eigenvectors and eigenvalues by relatively easy linear algebra methods.

Either approach is valid and give the same answers.

Let $\left\{\Omega_{\mathrm{i}}\right\}$ be a convenient complete basis set $\left\{\Omega_{\mathrm{i}}\right\}$ in the space of the problem. We need a complete set so all the standard problems covered in C374a are useful. These include the particle-in-a box wave functions, harmonic oscillator functions, rigid-rotor functions, Hatom orbitals, etc.

Which do you choose? It depends on the problem. If the Hamiltonian for example is a distorted particle-in-a box type problem, use a normal particle-in-a box basis set to construct the matrix operators.

In general:

$$
\left\langle\Omega_{i} \mid \Omega_{j}\right\rangle=\delta_{i j} \quad \text { (orthonormal) }
$$

Write: $\quad \psi=\sum_{i=1}^{N} c_{i} \Omega_{i}$
$\mathrm{N}=$ infinity to be rigorous; in practice it isn't.

Substitute (2) into (1).

$$
\Rightarrow \sum_{i=1}^{N} c_{i} \hat{M} \Omega_{i}=m\left(\sum_{i=1}^{N} c_{i} \Omega_{i}\right)
$$

Multiply by $\Omega_{\mathrm{k}}{ }^{*}$ and integrate. $(\mathrm{k}=1,2,3, \ldots, \mathrm{~N})$

$$
\therefore \sum_{i=1}^{N} c_{i} \underbrace{\left\langle\Omega_{k}\right| \hat{M}\left|\Omega_{i}\right\rangle}_{M_{k i}}=m \sum_{i=1}^{N} c_{i} \underbrace{\left\langle\Omega_{k} \mid \Omega_{i}\right\rangle}_{\delta_{k i}}=m c_{k}
$$

$$
\begin{align*}
& \quad \begin{array}{l}
\text { Matrix elements in }\left\{\Omega_{\mathrm{i}}\right\} ; \\
\text { known }
\end{array} \\
\therefore & \sum_{i=1}^{N} M_{k i} c_{i}=m c_{k} \\
\Rightarrow & \sum_{i=1}^{N}\left[M_{k i}-m \delta_{k i}\right] c_{i}=0 ;(k=1,2,3, \ldots, N)
\end{align*}
$$

(3) Is a set of N simultaneous homogenous linear equations in N unknowns: $\left\{\mathrm{c}_{\mathrm{i}}\right\} \mathrm{I}=1,2,3, \ldots, \mathrm{~N}$ once $\{\mathrm{m}\}$ are known.

A trivial solution, $c_{i}=0$ for all I will satisfy (3) (but not us).
A non-trivial solution exist only if the determinant of the coefficients of the unknowns is zero

$$
\left|M_{k i}-m \delta_{k i}\right|=0
$$

Expanding (4) out yields a polynomial of degree N for m since the $M_{k i}$ are known.
$\rightarrow \mathrm{N}$ roots: $\mathrm{m}_{\mathrm{i}} \mathrm{i}=1,2,3, \ldots, \mathrm{~N}$

Let's see what these results look like in matrix notation.
(3) Written in long hand for $\mathrm{k}=1,2,3, \ldots, \mathrm{~N}$

$$
\begin{aligned}
& k=1: M_{11} c_{1}+M_{12} c_{2}+M_{13} c_{3}+\cdots+M_{1 N} c_{N}=m c_{1} \\
& k=2: M_{21} c_{1}+M_{22} c_{2}+M_{23} c_{3}+\cdots+M_{2 N} c_{N}=m c_{2} \\
& k=3: M_{31} c_{1}+M_{32} c_{2}+M_{33} c_{3}+\cdots+M_{3 N} c_{N}=m c_{3}
\end{aligned}
$$

$$
k=N: M_{N 1} c_{1}+M_{N 2} c_{2}+M_{N 3} c_{3}+\cdots+M_{N N} c_{N}=m c_{N}
$$

This is the same as: $\quad \tilde{M} \tilde{C}=m \tilde{C} \quad$ eigenvalue problem in matrix form where:

$$
\tilde{M}=\left(\begin{array}{ccccc}
M_{11} & M_{12} & M_{13} & \ldots & M_{1 N} \\
M_{21} & M_{22} & M_{23} & \ldots & M_{2 N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
M_{N 1} & M_{N 2} & M_{N 3} & \ldots & M_{N N}
\end{array}\right) \quad \tilde{c}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right) \quad \begin{aligned}
& \text { N x 1 column matrix } \\
& \text { or column vector }
\end{aligned}
$$

$\mathrm{N} x \mathrm{~N}$ square matrix

