$$
\therefore\left(\begin{array}{ccccc}
M_{11} & M_{12} & M_{13} & \ldots & M_{1 N} \\
M_{21} & M_{22} & M_{23} & \ldots & M_{2 N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
M_{N 1} & M_{N 2} & M_{N 3} & \ldots & M_{N N}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right)=m\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right)
$$

(3) written in long form:

$$
\begin{aligned}
& k=1:\left(M_{11}-m\right) c_{1}+M_{12} c_{2}+M_{13} c_{3}+\cdots+M_{1 N} c_{N}=0 \\
& k=2: M_{21} c_{1}+\left(M_{22}-m\right) c_{2}+M_{23} c_{3}+\cdots+M_{2 N} c_{N}=0 \\
& k=3: M_{31} c_{1}+M_{32} c_{2}+\left(M_{33}-m\right) c_{3}+\cdots+M_{3 N} c_{N}=0 \\
& \vdots \\
& k=N: M_{N 1} c_{1}+M_{N 2} c_{2}+M_{N 3} c_{3}+\cdots+\left(M_{N N}-m\right) c_{N}=0
\end{aligned}
$$

This can be written as: $\quad(\widetilde{M}-m \widetilde{I}) \widetilde{c}=0$
\mathbf{I} is an NxN unit matrix where $\mathrm{I}_{\mathrm{ij}}=\delta_{\mathrm{ij}}$

$$
\Rightarrow\left[\left(\begin{array}{ccccc}
M_{11} & M_{12} & M_{13} & \ldots & M_{1 N} \\
M_{21} & M_{22} & M_{23} & \ldots & M_{2 N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
M_{N 1} & M_{N 2} & M_{N 3} & \ldots & M_{N N}
\end{array}\right)-m\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)\right]\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right)=0
$$

Note: if m is known, can solve (3) for $c_{1}, c_{2}, \ldots, c_{N}$. Get a non-trivial solution only if the determinant of the coefficients of the unknown $\left\{c_{i}\right\}$ is zero
(4) In matrix form: $\quad|\tilde{M}-m \widetilde{I}|=0$

$$
\left|\begin{array}{ccccc}
\left(M_{11}-m\right) & M_{12} & M_{13} & \ldots & M_{1 N} \\
M_{21} & \left(M_{22}-m\right) & M_{23} & \ldots & M_{2 N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
M_{N 1} & M_{N 2} & M_{N 3} & \ldots & M_{N N}
\end{array}\right|=0
$$

This is called a SECULAR EQUATION for the
eigenvalues m; that is, it yields the m's.

Return to the eigenvalue problem: $\quad \widetilde{M} \widetilde{C}=m \widetilde{C}$
(a)

Let \mathbf{M} be block diagonal and partition the column vector \mathbf{c}

$$
\tilde{M}=\left(\begin{array}{ccc}
\widetilde{M}^{(1)} & 0 & 0 \tag{b}\\
0 & \widetilde{M}^{(2)} & 0 \\
0 & 0 & \widetilde{M}^{(3)}
\end{array}\right) \widetilde{c}=\left(\begin{array}{l}
\widetilde{c}^{(1)} \\
\widetilde{c}^{(2)} \\
\widetilde{c}^{(3)}
\end{array}\right)
$$

Then (a) becomes:

$$
\left(\begin{array}{ccc}
\tilde{M}^{(1)} & 0 & 0 \tag{c}\\
0 & \tilde{M}^{(2)} & 0 \\
0 & 0 & \tilde{M}^{(3)}
\end{array}\right)\left(\begin{array}{l}
\widetilde{c}^{(1)} \\
\widetilde{c}^{(2)} \\
\widetilde{c}^{(3)}
\end{array}\right)=m\left(\begin{array}{c}
\widetilde{c}^{(1)} \\
\widetilde{c}^{(2)} \\
\widetilde{c}^{(3)}
\end{array}\right)
$$

Using the usual rules of matrix multiplication one obtains:

$$
\begin{gathered}
\tilde{M}^{(1)} \widetilde{c}^{(1)}=m \widetilde{C}^{(1)} \\
\widetilde{M}^{(2)} \widetilde{c}^{(2)}=m \widetilde{c}^{(2)} \\
\widetilde{M}^{(3)} \widetilde{c}^{(3)}=m \widetilde{c}^{(3)}
\end{gathered}
$$

Therefore, if \mathbf{M} involves a $\mathrm{N} \times \mathrm{N}$ problem where N is large, (a) can be simplified into (this case) three eigenvalue problems of smaller dimensions given by (d).
$\rightarrow 3$ secular equations of smaller dimension to solve. This is easiest (and trivial) to do if \mathbf{M} is completely diagonal. There are ways to diagonalize \mathbf{M}, using the eigenfunctions of \mathbf{M}, but we won't be covering that in this course.

Procedure

Given: $|\widetilde{M}-m \widetilde{I}|=0 \quad$ = secular equation that yields m_{i}
1.) Take one solution for m, say m_{1} and substitute into the set of equations given by:

$$
\begin{equation*}
(\tilde{M}-m \widetilde{I}) \widetilde{c}=0 \tag{1}
\end{equation*}
$$

Solve for $\mathrm{c}_{\mathrm{n} 1}, \mathrm{n}=1,2, \ldots, \mathrm{~N}$

Since the solutions to (1) can only be solved within a constant; that is, for $\mathrm{c}_{\mathrm{n} 1} / \mathrm{c}_{11}$, the expansion coefficients can be completely specified by requiring $\Psi_{1}=\Sigma_{n=1, \ldots, \mathrm{~N}} \mathrm{c}_{\mathrm{ni}} \Omega_{\mathrm{n}}$ to be normalized; that is, $\left\langle\Phi_{\mathrm{i}} \mid \Phi_{\mathrm{i}}\right\rangle=1=\Sigma_{\mathrm{n}=1, \ldots, \mathrm{~N}}\left|\mathrm{c}_{\mathrm{n} 1}\right|^{2}$.

Repeat steps above for next m_{j}, solving for the $\left\{\mathrm{c}_{\mathrm{nj}}\right\}$, and requiring Φ_{j} to be normal. The procedure is repeated for $j=1,2, \ldots, N$.

2.4: Time-independent degenerate perturbation theory

A. Getting the solution in principle: Procedure is effectively similar to nondegenerate case but needs modification for 2 reasons.
1.) $\mathrm{E}_{\mathrm{k}}{ }^{(0)}-\mathrm{E}_{\mathrm{q}}{ }^{(0)}$ can not be zero when we want to calculate a_{k} in the spectral expansion
2.) If there are 2 or more states with the same energy we don't know which state will arise in the expansion

Recall:

$$
\begin{aligned}
& E_{q}=E_{q}^{(0)}+\lambda E_{q}^{(1)}+\lambda^{2} E_{q}^{(2)}+\ldots \\
& \psi_{q}=\psi_{q}^{(0)}+\lambda \psi_{q}^{(1)}+\lambda^{2} \psi_{q}^{(2)}+\ldots
\end{aligned}
$$

$$
\text { As } \lambda \rightarrow 0, \mathrm{E}_{\mathrm{q}} \rightarrow \mathrm{E}_{\mathrm{q}}^{(0)} \text { and } \Psi_{\mathrm{q}} \rightarrow \Psi_{\mathrm{q}}^{(0)}
$$

But which state if there more than one with the same $\mathrm{E}_{\mathrm{q}}{ }^{(0)}$?
In general therefore $\quad \lim _{\lambda \rightarrow 0} \psi_{q}=\sum_{j} c_{j} \psi_{j}^{(0)} \quad \begin{aligned} & \text { The sum is over the degenerate states, } \\ & \text { where the degeneracy is labeled g. }\end{aligned}$

To solve this problem, we need two pieces of information:
a) superposition principle
b) orthonormalization procedure

a) Superposition Principle

All linear combinations of eigenfunctions of an operator \mathbf{M} corresponding to the same degenerate eigenvalue, m, are also eigenfunctions of \mathbf{M} with eigenvalue m .

That is: $\quad \hat{M} \psi_{j}=m \psi_{j} \quad j=1,2, \ldots, g$

$$
\therefore \hat{M}\left(\sum_{j} c_{j} \psi_{j}\right)=\sum_{j} c_{j} \hat{M} \psi_{j}=\sum_{j} c_{j} m \psi_{j}=m\left(\sum_{j} c_{j} \psi_{j}\right)
$$

This means we can make linear combinations at will without altering the solutions to the problem.

Recall: eigenfunctions of a self-adjoint operator corresponding to different eigenvalues are orthogonal. Eigenfunctions which are degenerate may be but more than not are not orthogonal to one another

No problem: it is always possible to construct linear combinations of degenerate eigenfunctions which are orthogonal and normalized; that is orthonormal (point 2.)

b) Orthonormalization: Schmidt procedure

Consider a 3-fold degenerate set $\left(\Psi_{1}, \Psi_{2}, \Psi_{3}\right)$.
$\left\langle\psi_{i} \mid \psi_{j}\right\rangle \neq 0$ necessarily.
Therefore, construct three new functions $\left(\Phi_{1}{ }^{(0)}, \Phi_{2}{ }^{(0)}, \Phi_{3}{ }^{(0)}\right)$ from $\left(\Psi_{1}, \Psi_{2}, \Psi_{3}\right)$ which are.
Procedure:
Let $\quad \phi_{1}^{(0)}=\psi_{1}$

$$
\begin{aligned}
& \phi_{2}^{(0)}=b_{1} \phi_{1}^{(0)}+b_{2} \psi_{2}=b_{1} \psi_{1}+b_{2} \psi_{2} \\
& \phi_{3}^{(0)}=c_{1} \phi_{1}^{(0)}+c_{2} \phi_{2}^{(0)}+c_{3} \psi_{3}=c_{1} \psi_{1}+c_{2}\left(b_{1} \psi_{1}+b_{2} \psi_{2}\right)+c_{3} \psi_{3}
\end{aligned}
$$

and require $\quad\left\langle\phi_{i}^{(0)} \mid \phi_{j}^{(0)}\right\rangle=\delta_{i j}$

Thus, for the example above:
i) $\phi_{1}^{(0)}=\psi_{1}$

$$
\text { ii) } \begin{aligned}
\left\langle\phi_{2}^{(0)} \mid \phi_{2}^{(0)}\right\rangle= & 1=\left\langle b_{1} \psi_{1}+b_{2} \psi_{2} \mid b_{1} \psi_{1}+b_{2} \psi_{2}\right\rangle \\
& =b_{1} b_{1}^{*}\left\langle\psi_{1} \mid \psi_{1}\right\rangle+b_{2}^{*} b_{2}\left\langle\psi_{2} \mid \psi_{2}\right\rangle+b_{1}^{*} b_{2}\left\langle\psi_{1} \mid \psi_{2}\right\rangle+b_{2}^{*} b_{1}\left\langle\psi_{2} \mid \psi_{1}\right\rangle \\
& =b_{1}^{2}+b_{2}^{2}+2 b_{1} b_{2}\left\langle\psi_{1} \mid \psi_{2}\right\rangle
\end{aligned}
$$

$$
\operatorname{but}\left\langle\phi_{1}^{(0)} \mid \phi_{2}^{(0)}\right\rangle=0=\left\langle\psi_{1} \mid b_{1} \psi_{1}+b_{2} \psi_{2}\right\rangle
$$

$$
=b_{1}+b_{2}\left\langle\psi_{1} \mid \psi_{2}\right\rangle
$$

This is 2 equations in 2 unknowns (b_{1} and b_{2}) since $\left\langle\boldsymbol{\Psi}_{\mathrm{i}} \mid \Psi_{\mathrm{j}}\right\rangle$ can be calculated
iii) Similarly, use

$$
\left\langle\phi_{3}^{(0)} \mid \phi_{3}^{(0)}\right\rangle=1 ;\left\langle\phi_{1}^{(0)} \mid \phi_{3}^{(0)}\right\rangle=0 ;\left\langle\phi_{2}^{(0)} \mid \phi_{3}^{(0)}\right\rangle=0
$$

to generate 3 equations in 3 unknowns to solve for ($\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$).
These will be our starting wave functions! For state q, we will call these states $\left\{\Phi_{\mathrm{q}, \mathrm{j}}{ }^{(0)}\right\}$

Now we can
1.) generate a complete orthonormal set of wave functions by linear combinations of the form

$$
\phi_{q, j}^{(0)}=\sum_{j=1}^{g} c_{j} \psi_{q, j}^{(0)}
$$

for all degenerate eigenvalues; that is, generate g 's with g sets of coefficients.
2. Use this new set of wave functions in a perturbation problem.

For the following be careful of the meaning of super- and subscripts
Will use: $\quad j$ for the degenerate level, $j=1,2, \ldots, g$
q for the level of interest
k for all levels, $k=1,2, \ldots, 00$, degenerate or not.

