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(3) written in long form:
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This can be written as: ( ) 0~~~ =− cImM

I

 

is an N x N unit matrix where Iij

 

= δij
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Note:

 

if m is known, can solve (3) for c1

 

, c2

 

,…,cN

 

. Get a non-trivial solution only if the 
determinant of the coefficients of the unknown {ci

 

} is zero

(4) In matrix form: 0~~ =− ImM
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This is called a SECULAR SECULAR 
EQUATIONEQUATION

 

for the 
eigenvalues m; that is, it 
yields the m’s.



Return to the eigenvalue problem: )(~~~ acmcM =

Let M be block diagonal and partition the column vector c
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Then (a) becomes:
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Using the usual rules of matrix multiplication one obtains:
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cmcM
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cmcM

=

=
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Therefore, if M involves a N x N problem where N is large, (a) can be 
simplified into (this case) three eigenvalue problems of smaller

 

dimensions 
given by (d).

→ 3 secular equations of smaller dimension to solve. This is easiest (and 
trivial) to do if M is completely diagonal. There are ways to diagonalize

 

M, 
using the eigenfunctions  of M, but we won’t be covering that in this 
course.



ProcedureProcedure

Given: 0~~ =− ImM = secular equation that yields mi

1.) Take one solution for m, say m1

 

and substitute into the set of equations given by:

( ) )1(0~~~ =− cImM

Solve for cn1

 

, n = 1,2,…,N

Since the solutions to (1) can only be solved within a constant;

 

that is, for cn1

 

/c11

 

, the 
expansion coefficients can be completely specified by requiring Ψ1

 

=Σn=1,..,N

 

cni

 

Ωn

 

to be 
normalized; that is, <Φi

 

|Φi

 

> = 1 = Σn=1,..,N

 

|cn1

 

|2.

Repeat steps above for next mj

 

, solving for the {cnj

 

}, and requiring Φj

 

to be 
normal. The procedure is repeated for j = 1,2,…,N.



2.4: Time2.4: Time--independent degenerate perturbation theoryindependent degenerate perturbation theory

A.A.

 

Getting the solution in principle: Procedure is effectively similar to non-

 
degenerate case but needs modification for 2 
reasons.

1.)  Ek
(0)

 

– Eq
(0)

 

can not be zero when we want to calculate ak

 

in the spectral expansion

2.)  If there are 2 or more states with the same energy we don’t

 

know which state 
will arise in the expansion

Recall: 
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+++=

qqqq
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As λ → 0, Eq

 

→Eq
(0)

 

and Ψq

 

→ Ψq
(0)

But which state if there more than one with the same Eq
(0)?

In general therefore
)0(

0
lim j

j
jq cψψ

λ ∑=→

The sum is over the degenerate states, 
where the degeneracy is labeled g.

To solve this problem, we need two pieces of information:
a) superposition principle
b) orthonormalization

 

procedure



a) Superposition Principlea) Superposition Principle

All linear combinations of eigenfunctions of an operator M corresponding to 
the same degenerate eigenvalue, m, are also eigenfunctions of M with 
eigenvalue m.

That is: gjmM jj ,...,2,1ˆ == ψψ
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j
j

j
jj cmmcMccM ψψψψ ˆˆ

This means we can make linear combinations at will without altering the 
solutions to the problem.

Recall: eigenfunctions of a self-adjoint operator corresponding to different 
eigenvalues are orthogonal. Eigenfunctions which are degenerate may be but 
more than not are not orthogonal to one another



No problem: it is always possible to construct linear combinations of degenerate 
eigenfunctions which are orthogonal and normalized; that is orthonormal (point 2.) 

b) b) OrthonormalizationOrthonormalization: Schmidt procedure: Schmidt procedure

Consider a 3-fold degenerate set (Ψ1

 

, Ψ2

 

, Ψ3

 

).

.ynecessaril0| ≠ji ψψ
Therefore, construct three new functions (Φ1

(0), Φ2
(0), Φ3

(0)) from (Ψ1

 

, Ψ2

 

, Ψ3

 

) which are.

Procedure:

Let
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and require ijji δφφ =)0()0( |



Thus, for the example above:
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This is 2 equations in 2 unknowns (b1

 

and b2

 

) since <Ψi

 

|Ψj

 

> can be calculated

0|;0|;1|

useSimilarly,iii)
)0(
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2
)0(

3
)0(

1
)0(

3
)0(

3 === φφφφφφ

to generate 3 equations in 3 unknowns to solve for (c1

 

, c2

 

, c3

 

).

These will be our starting wave functions!  For state q, we 
will call these states {Φq,j

(0)}



Now we can 

1.) generate a complete orthonormal set of wave functions by linear 
combinations of the form )0(

,
1

)0(
, jq

g

j
jjq cψφ ∑

=

=

for all degenerate eigenvalues; that is, generate g Φ’s with g sets of 
coefficients.

2. Use this new set of wave functions in a perturbation problem.

For the following be careful of the meaning of super-

 

and subscripts

Will use:     j  for the degenerate level,  j = 1,2,…,g
q for the level of interest
k for all levels,   k=1,2,…,00, degenerate or not.
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