Mathematical appendix
A review of the math needed for this part of the course

Algebra:

How to solve a linear equation
How to read slope and intercept from a graph
slope $=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
intercept $=\left(y_{1} x_{2}-y_{2} x_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$
reading from the graph is easier
Exponentials and logarithms
$\frac{1}{e^{a}}=e^{-a}$
$e^{a} e^{b}=e^{a+b}$
$\frac{e^{a}}{e^{b}}=e^{a-b}$
$a \ln b=\ln b^{a}$
$\ln a b=\ln a+\ln b$
$\ln \left(\frac{a}{b}\right)=\ln a-\ln b$

Calculus:
How to differentiate some simple functions
$\frac{d}{d x}(a x)=a$
$\frac{d}{d x}\left(a x^{2}\right)=2 a x$
$\frac{d}{d x}\left(\frac{a}{x}\right)=-\frac{a}{x^{2}}$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
chain rule
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{d y}{d x} \frac{d x}{d t}$
$\frac{d}{d x}(g h)=g \frac{d h}{d x}+h \frac{d g}{d x}$
$\frac{d}{d x}\left(\frac{g}{h}\right)=\frac{h \frac{d g}{d x}-g \frac{d h}{d x}}{h^{2}}$

How to integrate some simple functions
(in use one would either add a constant or integrate between limits)
$\int a d x=a x$
$\int a x d x=\frac{a x^{2}}{2}$
$\int e^{a x} d x=\frac{e^{a x}}{a}$
$\int \frac{d x}{x}=\ln (x)$
$\int \frac{a}{x^{2}} d x=-\frac{a}{x}$
Taylor series (approximation for small h)
$f(x+h)=f(x)+h \frac{d f}{d x}$
e.g. if $f=\ln , x=1, h=\delta$
$\ln (1+\delta)=\ln (1)+\delta \frac{1}{1}=\delta$

