Chemistry 734b

Problem Set 3 Due: Wednesday, February 27, 2008
This problem set is designed to show how to construct character tables. Its not that long.
1.) Consider the molecule trans-dichloroethylene:

which has $\mathrm{C}_{2 \mathrm{~h}}$ symmetry.
a) Almost anything can be used to construct matrix representatives! Use the two Cl atoms as basis set members to derive the four 2 x 2 matrices for the operations of the $\mathrm{C}_{2 \mathrm{~h}}$ point group: $\left\{E, C_{2}, i, \sigma_{h}\right\}$. Show that the resultant character set does not correspond to an irreducible representation.
b) The character set in part a) can be reduced to two irreducible representations with character sets: $\{1,1,1,1\}$ and $\{1,-1,-1,1\}$. What are the Mulliken symbols of these irreducible representations?
c) Using a unit vector \mathbf{z} positioned at the origin of the molecule and pointing out of the plane of the paper as a basis vector, construct a 1 x 1 matrix representation for the operations corresponding to the $\mathrm{C}_{2 \mathrm{~h}}$ point group. What is the Mulliken symbol of this irreducible representation?
d) Find the character set of the fourth and last irreducible representation for the $\mathrm{C}_{2 \mathrm{~h}}$ point group. Construct the character table for $\mathrm{C}_{2 \mathrm{~h}}$.
2.) Consider a general vector \mathbf{v}, whose base is at $(0,0,0)$ and whose tip is a (x, y, z) in the point group $\mathrm{C}_{2 \mathrm{~h}}$
a) Derive the set of four $3 x 3$ matrices for the operations: $\left\{E, C_{2}, i, \sigma_{h}\right\}$ that constitute the reducible representation, Γ_{m}, by which \mathbf{v} transforms. What is the character set for this representation?
b) Using the character table you derived in question 1 to reduce Γ_{m} into its component irreducible representations.
c) Show that the four matrices comprising Γ_{m} obey the same group multiplication table as the operations of $\mathrm{C}_{2 \mathrm{~h}}$.

