## Chemistry 734b 2008

## Problem Set 6 Due: Tuesday April 15, 2008.

1.) a) If a deuteron is substituted for one of the protons in methane $\left(\mathrm{CH}_{4}, \mathrm{~T}_{\mathrm{d}}\right.$ point group) one obtains the $\mathrm{C}_{3 \mathrm{v}}$ molecule $\mathrm{CH}_{3} \mathrm{D}$. Show that the molecule has six fundamentals, three of species $\mathrm{A}_{1}$ and three of species E , and that all theses fundamentals are both ir and R active.
b) The normal modes of $\mathrm{CH}_{4}$ are $\Gamma_{\text {vib }}=\mathrm{A}_{1} \oplus \mathrm{E} \oplus 2 \mathrm{~T}_{2}$. Construct a correlation table between these states in $\mathrm{T}_{\mathrm{d}}$ and those in $\mathrm{C}_{3 \mathrm{v}}$. You should get the same answer as in part a).
2.) Derive all the Russell- Saunders terms $\left({ }^{2 \mathrm{~S}+1} \mathrm{~L}_{\mathrm{J}}\right.$; including parity) for the following configurations. a) ( $n \mathrm{n} n$ 'p $\mathrm{n} " \mathrm{p}$ ), ( $n, \mathrm{n}^{\prime}, \mathrm{n}$ " are different principal quantum numbers)
b) ( ns np nd nf )
3.) Derive the both Russell-Saunders $\left({ }^{2 S+1} L_{j}\right.$; including parity) and $j$-j coupling atomic terms for a ( nd nf ) configuration. In $\mathrm{j}-\mathrm{j}$ coupling the states are simply labelled as $\mathrm{J}_{\text {parity }}$. Spin multiplicities have no meaning as the spin orbit interactions couples them with the l's to make j's. The number of J states and their values should be the same regardless of the coupling scheme. Their energies however, could be very different.
4.) Consider the $\operatorname{Mo}(\mathrm{CN})_{8}^{3-}$ and $\mathrm{Mo}(\mathrm{CN})_{8}^{4-}$ ions which both have $\mathrm{D}_{2 \mathrm{~d}}$ symmetry.
a) For both ions determine the charge on the Mo ion, and therefore, how many d-electrons are involved in electronic transitions; that is, find $\mathrm{d}^{\mathrm{n}}$ for each molecule.
b) In $\mathrm{D}_{2 \mathrm{~d}}$ symmetry the energy of the d -orbitals are ordered (in a crystal field sense) as: $\mathrm{E}\left(\mathrm{d}_{\mathrm{x} 2-\mathrm{y}}\right)<\mathrm{E}\left(\mathrm{d}_{22}\right)<$ $\mathrm{E}\left(\mathrm{d}_{\mathrm{yz}}, \mathrm{d}_{\mathrm{xz}}\right)<\mathrm{E}\left(\mathrm{d}_{\mathrm{xy}}\right)$. Use the $\mathrm{D}_{2 \mathrm{~d}}$ character table to establish the irreducible representations for each $\mathrm{d}-$ orbital.
c) For each ion establish the electronic configuration and possible symmetry allowed $\mathrm{d} \leftarrow \mathrm{d}$ transitions. (Keep in mind if necessary, all possible spin multiplicities).
d) What normal mode symmetries are required to make the symmetry forbidden transitions vibronically allowed?

