C734b: Symmetry and Chemical Applications

Rob Lipson

Part I: Fundamentals of Group Theory

C734b Fundamentals of Group Theory 1

The Rules of the Game Group: a collection of objects called elements which obey certain rules which interrelate them: Rule 1: The product of any 2 elements in the group and the square of each element must be an element in the group. Let the set of elements = $\{g_k\}$ When we say multiplication $\rightarrow g_i g_j \equiv$ "carry out operation implied by g_j and then that implied by gi". This is a right-to-left convention Rule 1 implies "closure" . . for all $g_i, g_j \in \{g_k\}, g_ig_j = g_\ell$ where g_ℓ is a member of $\{g_k\}$ In group theory multiplication is not necessarily commutative; that is, $g_i g_j \neq g_j g_i$ However, if they do, the groups are called Abelian groups C734b Fundamentals of Group 2 Theory

Rule 2: One element in the group must commute with all others and leave them unchanged.
≡ identity element (designated by E)

 $\Rightarrow Eg_i = g_i E = g_i \quad \forall \ g_i \in \{g_k\}$

Rule 3: The associative law of multiplication holds:

$$\Rightarrow g_i(g_jg_k) = (g_ig_j)g_k$$

This property holds for any continued product

For example:

$$(g_A g_B)(g_C g_D)(g_E g_F)(g_G g_H)$$

= $g_A(g_B g_C)(g_D g_E)(g_F g_G)g_H$
= $(g_A g_B)g_C(g_D g_E)g_F(g_G g_H)$
etc.
C734b Fundamentals of Group

Theory

3

4

Rule 4: Every element g_i must have an inverse or reciprocal, g_i^{-1} which is also an element of the group

$$g_i g_i^{-1} = g_i^{-1} g_i = E; \ g_i^{-1} \in \{g_k\} \forall g_i \in \{g_k\}$$

Group Multiplication Tables

The number of elements g in a group, G, is called the order of the group, say "h".

$$G \equiv G(h)$$

This means there are $h \ge h^2$ possible products to completely and uniquely define a group, G (abstractly)

These can be presented in a group multiplication table.

..

Consists of h rows and h columns. Each row and column is labelled by a group element.

C734b Fundamentals of Group Theory

For example:		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$= \frac{G(2) E A}{E E A}$ $= \frac{G(2) E A}{A A E}$ $= AA = E (Rule 4)$	
Another example:		
	$\begin{array}{c cccc} G(3) & E & A & B \\ \hline E & E & A & B \\ \hline A & A & AA & BA \end{array} \leftarrow \text{rule } 2 \\ \end{array}$	
	$\begin{array}{c cccc} B & B & AB & BB \\ & \uparrow & \\ rule 2 \end{array}$	
	C734b Fundamentals of Group Theory	6

C734b Fundamentals of Group Theory 9

Example:
$$\omega = e^{\frac{2\pi i}{n}}$$
 generates a cyclic group of order n.
Why? $\omega^n = e^{-2\pi i} = \cos(2\pi) - i\sin(2\pi) = 1 - 0 = 1 = E$
 $\therefore \left\{ \omega, \omega^2, \omega^3, \cdots, \omega^n \right\}$ is a cyclic group of period n.
If every element of a group can be expressed as a finite product of powers of elements in a particular sub-set, the elements in this sub-set are called the **group generators**.
For example: if the group generators are $\{g_1, g_2\}$ then
 $G_i = (g_1)^p (g_2)^q$
For a cyclic group, the group generator is one element, g_1 .
C734b Fundamentals of Group
Theory

<i>S</i> (3)	P_0	P_1	P_2	P_3	P_4	P_5	
P_0	P_0	P_1	P_2	P_3	P_4	P_5	
P_1	P_1	P_2	P_0	P_5	P_3	P_4	
P_2	P_2	P_0	P_1	P_4	P_5	P_3	
P_3	P_3	P_4	P_5	P_0	P_1	P_2	
P_4	P_4	P_5	P_3	P_2	P_0	P_1	
P_5	P_5	P_3	P_4	P_1	P_2	P_0	

ii) If an element A is conjugate with B, then B is conjugate with A

If
$$A = X^{-1}BX$$

 $\Rightarrow \exists Y \ni B = Y^{-1}AY$
 $A = X^{-1}BX$ $\therefore XAX^{-1} = XX^{-1}BXX^{-1} = B$
If $Y = X^{-1} \Rightarrow XAX^{-1} = Y^{-1}AY = B$
This is possible since any element, say X, must have an inverse, say Y.

C734b Fundamentals of Group Theory 17

iii) If A is conjugate to B and C then B and C are conjugate of each other.
If
$$A = X^{-1}BX$$
 and $A = Y^{-1}CY$
where {Y, X} are elements of G.
 $\Rightarrow X^{-1}BX = Y^{-1}CY$
 $\therefore C = (YX^{-1})B(XY^{-1})$ or $B = (XY^{-1})C(YX^{-1})$
but $\{X^{-1}, Y^{-1}, YX^{-1}, XY^{-1}\} \in G$
Let $YX^{-1} = Z^{-1}$ and $XY^{-1} = Z$
 $\therefore C = Z^{-1}BZ$
Therefore C is conjugate to B and vice-versa
 $C734b$ Fundamentals of Group
Theory

Proof:	
Let sub group = $\{A_1, A_2, A_3,, A_h\}$ (order = h).	
Take an element B which is a member of G but not in $\{A_1, A_2, A_3,, A_h\}$	
Form h products of B with the subgroup elements.	
$= \{BA_1, BA_2, BA_3,, Ba_h\}$	
These products are not in the subgroup	
For example: if $BA_2 = A_4$ and $A_5 = A_4^{-1}$	
\implies BA ₂ A ₅ = A ₄ A ₅ = BE =B	
This is impossible since B is not a member of the subgroup.	
C734b Fundamentals of Group Theory	22

Therefore, $\{A_1, A_2, ..., A_h\}$ and $\{BA_1, BA_2, ..., BA_h\}$ form a larger group of at least 2h members. If g > 2h choose a different element C which is a member of G but not $\{A_1, A_2, ..., A_h\}$ or $\{BA_1, BA_2, ..., BA_h\}$ \Rightarrow g must be $\ge 3h$ Repeat this k times until there are no more elements which are different from $\{A_i\}$, $\{BA_i\}$, $\{CA_i\}$ etc. Then g = kh where k is an integer \therefore g/h = k However, it does not follow that for a given group that there are subgroups of all orders which are divisors of g. Furthermore there can more than one subgroup of a given order. C734b Fundamentals of Group 23

Theory

Question: Can groups as a whole be multiplied? Answer is yes. **Direct Products** Suppose $A = \{a_i\}$ and $B = \{b_i\}$ are two groups of order a and b, respectively. If $a_i b_i = b_i a_i \quad \forall a_i \in A, \forall b_j \in B$ the direct product $G = A \otimes B$ is a also a group of order ab with elements $a_ib_i = b_ja_i$, i = 1, ..., a; j = 1, ..., b**Example:** $A = \{a_1, a_2\}$ $B = \{b_1, b_2, b_3\}$ $G = A \otimes B = \{a_1B, a_2B\} \text{ or } \{Ba_1, Ba_2\}$ $= \{a_1b_1, a_1b_2, a_1b_3, a_2b_1, a_2b_2, a_2b_3\}$ Order = 2x3 = 6More on direct products later. They're important! C734b Fundamentals of Group 24 Theory

