C734b: Symmetry and Chemical Applications

Rob Lipson

Part I: Fundamentals of Group Theory

The Rules of the Game

Group: a collection of objects called elements which obey certain rules which interrelate them:

Rule 1: The product of any 2 elements in the group and the square of each element must be an element in the group.

Let the set of elements $=\left\{\mathrm{g}_{\mathrm{k}}\right\}$
When we say multiplication $\rightarrow \mathrm{g}_{\mathrm{i}} \mathrm{g}_{\mathrm{j}} \equiv$ "carry out operation implied by g_{j} and then that implied by g_{i} ". This is a right-to-left convention
-. Rule 1 implies "closure"
for all $g_{i}, g_{j} \varepsilon\left\{g_{k}\right\}, g_{i} g_{j}=g_{\ell}$ where g_{ℓ} is a member of $\left\{g_{k}\right\}$
In group theory multiplication is not necessarily commutative; that is, $\mathrm{g}_{\mathrm{i}} \mathrm{g}_{\mathrm{j}} \neq \mathrm{g}_{\mathrm{j}} \mathrm{g}_{\mathrm{i}}$
However, if they do, the groups are called Abelian groups

Rule 2: One element in the group must commute with all others and leave them unchanged.
三 identity element (designated by E)

$$
\Rightarrow E g_{i}=g_{i} E=g_{i} \forall g_{i} \in\left\{g_{k}\right\}
$$

Rule 3: The associative law of multiplication holds:

$$
\Rightarrow g_{i}\left(g_{j} g_{k}\right)=\left(g_{i} g_{j}\right) g_{k}
$$

This property holds for any continued product
For example:

$$
\begin{aligned}
& \left(g_{A} g_{B}\right)\left(g_{C} g_{D}\right)\left(g_{E} g_{F}\right)\left(g_{G} g_{H}\right) \\
& =g_{A}\left(g_{B} g_{C}\right)\left(g_{D} g_{E}\right)\left(g_{F} g_{G}\right) g_{H} \\
& =\left(g_{A} g_{B}\right) g_{C}\left(g_{D} g_{E}\right) g_{F}\left(g_{G} g_{H}\right)
\end{aligned}
$$

etc.
C734b Fundamentals of Group

Rule 4: Every element g_{i} must have an inverse or reciprocal, $\mathrm{g}_{\mathrm{i}}{ }^{-1}$ which is also an element of the group

$$
g_{i} g_{i}^{-1}=g_{i}^{-1} g_{i}=E ; g_{i}^{-1} \in\left\{g_{k}\right\} \forall g_{i} \in\left\{g_{k}\right\}
$$

Group Multiplication Tables

The number of elements g in a group, G , is called the order of the group, say " h ".

$$
\therefore G \equiv G(h)
$$

This means there are $\mathrm{h} \times \mathrm{h}=\mathrm{h}^{2}$ possible products to completely and uniquely define a group, G (abstractly)
These can be presented in a group multiplication table.
Consists of h rows and h columns. Each row and column is labelled by a group element.

Each entry in table under a given column and along a row = product of elements heading the column and row.

$$
\because g_{i} g_{j} \neq g_{j} g_{i} \text { necessarily }
$$

Take as convention: product $=($ column element $) \mathrm{x}($ row element $)$

Rearrangement Theorem

Each row and column in a group multiplication table lists each group element once and only once
\Rightarrow No two rows or columns may be identical
\Rightarrow Each row and column is a rearranged list of group elements

For example:

$G(2)$	E	A
E	$E E$	$A E$
A	$E A$	$A A$

\equiv| $G(2)$ | E | A |
| :---: | :---: | :---: |
| E | E | A |
| A | A | E |

Note: $\mathrm{A}=\mathrm{A}^{-1}$ since $\mathrm{AA}=\mathrm{E}$ (Rule 4)

Another example:

$G(3)$	E	A	B	
E	E	A	B	\leftarrow rule 2
A	A	$A A$	$B A$	
B	B	$A B$	$B B$	
rule 2				

There are limited choices here:
Either 1.) $\mathrm{AA}=\mathrm{E}$ or 2.) $\mathrm{AA}=\mathrm{B}$
1.)

X
2.)

Cyclic Groups

$G(3)$ is the simplest nontrivial example of a cyclic group.
If a sequence $g_{1}, g_{1}{ }^{2}, g_{1}{ }^{3} \ldots$ repeats itself at $g_{1}{ }^{h+1}=g_{1}$ because $g_{1}{ }^{\mathrm{h}}=\mathrm{E}$, then the set $\left\{g_{1}, g_{1}{ }^{2}, \ldots, g_{1}{ }^{h}=E\right\}$ which is the period of the group is the cyclic group C of order h; that is, $C(h)$.

Note: for $G(3)$ the period is:
$\{\mathrm{A}, \mathrm{AA}, \mathrm{AAA}\} \equiv\{\mathrm{A}, \mathrm{B}, \mathrm{BA}\}=\{\mathrm{A}, \mathrm{B}, \mathrm{E}\}$
-. $G(3) \equiv$ cyclic group $C(3)$

Properties of Cyclic Groups

1.) Such groups are Abelian since group elements of the form $\mathrm{g}_{1} \mathrm{Mg}_{1}{ }^{\mathrm{N}}=\mathrm{g}_{1} \mathrm{Ng}_{1}{ }^{\mathrm{M}}$ for all M, N.
2.) For a finite cyclic group the existence of the inverse of every group element is guaranteed.

$$
\begin{aligned}
\because g_{1}^{h}=E & \Rightarrow g_{1}^{1} g_{1}^{h-1}=E \\
& \Rightarrow g_{1}^{h-1}=g_{1}^{-1}
\end{aligned}
$$

True for all elements $\left\{\mathrm{g}_{\mathrm{k}}\right\}$ since g_{1} was not specified

Example: $\omega=e^{-\frac{2 \pi i}{n}}$ generates a cyclic group of order n .

Why? $\quad \omega^{n}=e^{-2 \pi i}=\cos (2 \pi)-i \sin (2 \pi) \quad=1-0=1=\mathrm{E}$
$\therefore\left\{\omega, \omega^{2}, \omega^{3}, \cdots, \omega^{n}\right\}$ is a cyclic group of period n.

If every element of a group can be expressed as a finite product of powers of elements in a particular sub-set, the elements in this sub-set are called the group generators.

For example: if the group generators are $\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}\right\}$ then

$$
\mathrm{G}_{\mathrm{i}}=\left(\mathrm{g}_{1}\right)^{\mathrm{P}}\left(\mathrm{~g}_{2}\right)^{\mathrm{q}}
$$

For a cyclic group, the group generator is one element, g_{1}.

Example: Permutation Group S(3)

A permutation operator P rearranges a set of objects.
If for example $\mathrm{P}\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}=\{\mathrm{b}, \mathrm{a}, \mathrm{c}, \ldots\}$

This means that $\mathrm{P} \equiv$ operator which interchanges a and b .
Important:
P_{ij} means "interchange objects CURRENTLY at the locations
ORGINALLY occupied by objects i and j.

Means can consider the original configuration as objects allocated to certain boxes (like electrons in orbitals).
$\therefore \mathrm{P}_{\mathrm{ij}}$ means "interchange the contents of the i^{th} and $\mathrm{j}^{\text {th }}$ box, whatever they currently happen to be".

Consider 3 objects.
The number of permutations is $3!=3 \times 2 \times 1=6$.

\equiv| 1 | 2 | 3 |
| :--- | :--- | :--- |$\quad=$ original configuration

Let P_{1} and P_{2} correspond to the two cyclic permutations:

Let P_{3}, P_{4} and P_{5} correspond to the 3 binary interchanges:

$=$

$\left\{\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}\right\}$ constitute a group: $\mathrm{S}(3)$
If so all binary products will be elements of $S(3)$

Example: Binary products with P_{1} :

In this way one can construct the entire multiplication table.

Multiplication Table for the S(3) permutation group

$S(3)$	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
P_{0}	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
P_{1}	P_{1}	P_{2}	P_{0}	P_{5}	P_{3}	P_{4}
P_{2}	P_{2}	P_{0}	P_{1}	P_{4}	P_{5}	P_{3}
P_{3}	P_{3}	P_{4}	P_{5}	P_{0}	P_{1}	P_{2}
P_{4}	P_{4}	P_{5}	P_{3}	P_{2}	P_{0}	P_{1}
P_{5}	P_{5}	P_{3}	P_{4}	P_{1}	P_{2}	P_{0}

Conjugate Elements and Classes

Elements can be separated into smaller sets called classes using a similarity transformation

If $\quad g_{i}, g_{j}, g_{k} \in G \quad$ and $\quad g_{i}^{-1} g_{i} g_{j}=g_{k}$
then g_{k} is the transform of g_{j} and g_{j} and g_{k} are conjugate elements

The complete set of elements conjugate to g_{i} form a class.
The number of elements in a class is called the order of the class (三 integral factor of h)
i) Every element is conjugate with itself.

True if there is at least one element X such that:

$$
g_{i}=X^{-1} g_{i} X \text { for any } g_{i} \in\left\{g_{k}\right\}
$$

Works if $\mathrm{X}=\mathrm{E}$
ii) If an element A is conjugate with B, then B is conjugate with A

$$
\begin{array}{rl}
\text { If } & A=X^{-1} B X \\
& \Rightarrow \exists Y \ni B=Y^{-1} A Y \\
A= & X^{-1} B X \quad \therefore X A X^{-1}=X X^{-1} B X X^{-1}=B \\
\text { If } Y & Y X^{-1} \Rightarrow X A X^{-1}=Y^{-1} A Y=B
\end{array}
$$

This is possible since any element, say X , must have an inverse, say Y .
iii) If A is conjugate to B and C then B and C are conjugate of each other.

If $\quad A=X^{-1} B X$ and $A=Y^{-1} C Y$
where $\{\mathrm{Y}, \mathrm{X}\}$ are elements of G .
$\Rightarrow X^{-1} B X=Y^{-1} C Y$
$\therefore C=\left(Y X^{-1}\right) B\left(X Y^{-1}\right) \quad$ or $\quad B=\left(X Y^{-1}\right) C\left(Y X^{-1}\right)$
but $\quad\left\{X^{-1}, Y^{-1}, Y X^{-1}, X Y^{-1}\right\} \in G$
Let $Y X^{-1}=Z^{-1}$ and $X Y^{-1}=Z$
$\therefore C=Z^{-1} B Z$
Therefore C is conjugate to B and vice-versa

Example: Use multiplication table for $\mathrm{S}(3)$ to find elements which are conjugate with P_{1}

Similarly:

$$
\begin{aligned}
& \mathrm{P}_{1}^{-1} \mathrm{P}_{1} \mathrm{P}_{1}=\mathrm{P}_{1}^{-1} \mathrm{P}_{2}=\mathrm{P}_{2} \mathrm{P}_{2}=\mathrm{P}_{1} \\
& \mathrm{P}_{2}^{-1} \mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{P}_{2}{ }^{-1} \mathrm{P}_{0}=\mathrm{P}_{1} \mathrm{P}_{0}=\mathrm{P}_{1} \\
& \mathrm{P}_{3}^{-1} \mathrm{P}_{1} \mathrm{P}_{3}=\mathrm{P}_{3}^{-1} \mathrm{P}_{5}=\mathrm{P}_{3} \mathrm{P}_{5}=\mathrm{P}_{2} \\
& \mathrm{P}_{4}^{-1} \mathrm{P}_{1} \mathrm{P}_{4}=\mathrm{P}_{4}^{-1} \mathrm{P}_{3}=\mathrm{P}_{4} \mathrm{P}_{3}=\mathrm{P}_{2} \\
& \mathrm{P}_{5}^{-1} \mathrm{P}_{1} \mathrm{P}_{5}=\mathrm{P}_{5}^{-1} \mathrm{P}_{4}=\mathrm{P}_{5} \mathrm{P}_{4}=\mathrm{P}_{2} \\
& \Rightarrow \quad\left\{\mathrm{P}_{1}, \mathrm{P}_{2}\right\} \text { form a class }
\end{aligned}
$$

Physical meaning of classes

The operation $\mathrm{B}=\mathrm{X}^{-1} \mathrm{AX}$ is the net operation obtained by first rotating object to some equivalent position X , next carrying out the operation A , then undoing the initial rotation by X^{-1}.

Thus, B is the same physical operation as A (such as a rotation through some angle) but performed about some different but physically an equivalent axis which is related to the axis of A by group operation X^{-1}

Subgroups

A subset H of G contained within G that is itself a group with the same laws of binary composition is a subgroup of G

Note: in $\mathrm{S}(3),\left\{\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}\right\}$ satisfies closure and is therefore a subgroup.

E is always a trivial subgroup of order 1 .
Some groups have no subgroups other than E; some have more than one.

Restriction:

The order of any subgroup h, of a group of order g must be a divisor (factor) of g
that is, $\mathrm{g} / \mathrm{h}=\mathrm{k}$ where k is an integer.
C734b Fundamentals of Group
Theory

Proof:

Let sub group $=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots, \mathrm{~A}_{\mathrm{h}}\right\}$ (order $\left.=\mathrm{h}\right)$.
Take an element B which is a member of G but not in $\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{h}\right\}$

Form h products of B with the subgroup elements.
$=\left\{\mathrm{BA}_{1}, \mathrm{BA}_{2}, \mathrm{BA}_{3}, \ldots, \mathrm{Ba}_{\mathrm{h}}\right\}$
These products are not in the subgroup
For example: if $\mathrm{BA}_{2}=\mathrm{A}_{4}$ and $\mathrm{A}_{5}=\mathrm{A}_{4}{ }^{-1}$
$\Rightarrow \quad \mathrm{BA}_{2} \mathrm{~A}_{5}=\mathrm{A}_{4} \mathrm{~A}_{5}=\mathrm{BE}=\mathrm{B}$

This is impossible since B is not a member of the subgroup.

Therefore, $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{h}}\right\}$ and $\left\{\mathrm{BA}_{1}, \mathrm{BA}_{2}, \ldots, \mathrm{BA}_{\mathrm{h}}\right\}$ form a larger group of at least 2 h members.

If $\mathrm{g}>2 \mathrm{~h}$ choose a different element C which is a member of G but not $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{h}}\right\}$ or $\left\{\mathrm{BA}_{1}, \mathrm{BA}_{2}, \ldots, \mathrm{BA}_{\mathrm{h}}\right\}$
$\Rightarrow \quad$ g must be $\geq 3 h$

Repeat this k times until there are no more elements which are different from $\left\{\mathrm{A}_{\mathrm{i}}\right\}$, $\left\{\mathrm{BA}_{\mathrm{i}}\right\},\left\{\mathrm{CA}_{\mathrm{i}}\right\}$ etc.

Then $\mathrm{g}=\mathrm{kh}$ where k is an integer

$$
\therefore \quad g / h=k
$$

However, it does not follow that for a given group that there are subgroups of all orders which are divisors of g .
Furthermore there can more than one subgroup of a given order.

Question: Can groups as a whole be multiplied?
Answer is yes.
Direct Products
Suppose $A=\left\{a_{i}\right\}$ and $B=\left\{b_{j}\right\}$ are two groups of order a and b, respectively.
If $\quad a_{i} b_{j}=b_{j} a_{i} \quad \forall a_{i} \in A, \forall b_{j} \in B$
the direct product $\quad G=A \otimes B$
is a also a group of order ab with elements $a_{i} b_{j}=b_{j} a_{i}, i=1, \ldots, a ; j=1, \ldots, b$

Example:

$$
\begin{array}{rlr}
\mathrm{A} & =\left\{\mathrm{a}_{1}, \mathrm{a}_{2}\right\} \quad \mathrm{B}=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right\} \\
G & =A \otimes B=\left\{\mathrm{a}_{1} \mathrm{~B}, \mathrm{a}_{2} \mathrm{~B}\right\} \text { or }\left\{\mathrm{Ba}_{1}, \mathrm{Ba}_{2}\right\} \\
& =\left\{\mathrm{a}_{1} \mathrm{~b}_{1}, \mathrm{a}_{1} \mathrm{~b}_{2}, \mathrm{a}_{1} \mathrm{~b}_{3}, \mathrm{a}_{2} \mathrm{~b}_{1}, \mathrm{a}_{2} \mathrm{~b}_{2}, \mathrm{a}_{2} \mathrm{~b}_{3}\right\} \quad \text { Order }=2 \times 3=6
\end{array}
$$

More on direct products later. They're important!

Two important terms in group theory are isomorphic and homomorphic
Two groups are isomorphic if there is a one-to-one correspondence between the elements of the two groups

Isomorphic mapping

Isomorphic implies if $\mathrm{AB}=\mathrm{C}$ then $\mathrm{A}^{\prime} \mathrm{B}^{\prime}=\mathrm{C}^{\prime}$
Both groups have the same multiplication table except perhaps for a change in symbols or in the meaning of the operations

C734b Fundamentals of Group

Two groups are homomorphic if there is a many-to-one relationship between some of the elements of the group

The structure of the two homomorphic groups are no longer identical but multiplication rules are preserved

This will be seen when discussing Character Tables.

