

Note: transpose of matrix = $\widetilde{A}^T = \{a_{ij}\}^T = \{a_{ji}\}^T$

Vectors in a p-dimensional space are specified by a p x 1 column vector.

Geometrical interpretation: they give the orthogonal coordinates of one end of the vector if the other end is at the origin of the coordinate system

Matrix Algebra

Matrices can be added, subtracted, multiplied and divided.

a) Addition and subtraction: $\widetilde{A} \pm \widetilde{B} = \widetilde{C} \implies c_{ij} = a_{ij} \pm b_{ij}$

b) Multiplication by a scalar α

$$\Rightarrow \alpha c_{ii} = \alpha a_{ii} \pm \alpha b_{ii}$$

C734b Matrix Representations

Definition:

For a square matrix its "character" or "trace", X ≡ sum of its diagonal elements

$$\chi = \sum_{j} a_{jj}$$

Properties: 1.) if $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$ and $\mathbf{D} = \mathbf{B} \cdot \mathbf{A}$ $\Rightarrow \chi_{\widetilde{C}} = \chi_{\widetilde{D}}$

2.) Conjugate matrices related by a similarity transformation have identical characters

$$\Rightarrow$$
 if $\widetilde{A} = X^{-1}\widetilde{B}X \Rightarrow \chi_{\widetilde{A}} = \chi_{\widetilde{B}}$

3.) If
$$\widetilde{C} = \widetilde{A} \otimes \widetilde{B} \Longrightarrow \chi_{\widetilde{C}} = \chi_{\widetilde{A}} \cdot \chi_{\widetilde{B}}$$

C734b Matrix Representations

In general: $\vec{r} = \langle e_1, e_2, ..., e_n \mid r_1, r_2, ..., r_n \rangle = \langle e \mid r \rangle$ $\vec{r} = \langle e_1, e_2, ..., e_n \mid r_1, r_2, ..., r_n \rangle = \langle e \mid r \rangle$ $\vec{r} = \langle e_1, e_2, ..., e_n \mid r_1, r_2, ..., r_n \rangle = \langle e \mid r \rangle$ $\vec{r} = \langle e_1 \mid r_1 \rangle$

C734b Matrix Representations

9

11

Matrix Representation of Operators Suppose a basis <e | is transformed to a new basis <e' | as a result of an operator R $\Rightarrow R\langle e | = \langle e' | = R\langle e_1, e_2, \cdots, e_n | = \langle e_1', e_2', \cdots, e_n' |$ $\{e_i^{\prime}\}$ can be expressed in terms of the old set by writing e_i^{\prime} as a sum of its projections: $e_{j}' = \sum_{i=1}^{n} e_{i} r_{ij}$ j = 1, ..., nwhere $r_{ij} \equiv$ component of e_j ' along e_i In matrix form: $\langle e_1', e_2', \cdots, e_n' | = \langle e_1, e_2, \cdots, e_n | \Gamma(R) \rangle$ $\Gamma(R) = (r_{ij}) = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ r & r & & & \\ \end{pmatrix}$ C734b Matrix Representations 12

 $\Gamma(R) \equiv$ matrix representative of the operator R

In 3-D configuration space there are 5 operations to describe the transformation of a point or points in space: E, σ , i, C_n, and S_n

Each can be described by a matrix $\Gamma(R)$ such that

$$\langle e' | = \langle e | \Gamma(R) \quad (e_2, e_2, e_3) = (\hat{i}, \hat{j}, \hat{k})$$

1.) Identity, E

$$\Rightarrow (e_1, e_2, e_3) \Gamma(E) = (e_1, e_2, e_3)$$

$$\Rightarrow \Gamma(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

C734b Matrix Representations

13

2.) Reflection, σ

If the plane of reflection coincides with a principle Cartesian plane (xy, xz, or yz), reflection changes the sign of the coordinate \perp to plane but leaves the coordinate whose axes defines the plane unchanged.

$$\Rightarrow \sigma(xy) = \langle e \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \langle e' | = (e_1, e_2, -e_3) = (e_1, e_2, \overline{e_3})$$

Similarly:

$$\sigma(xz) = \langle e \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \langle e' | = (e_1, -e_2, e_3) = (e_1, \overline{e}_2, e_3)$$
$$\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$$

$$\sigma(yz) = \langle e | \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \langle e' | = (-e_1, e_2, e_3) = (\overline{e_1}, e_2, e_3)$$

C734b Matrix Representations

$$\begin{split} & (\cos(\phi) - \sin(\phi) - 0) \\ & \sin(\phi) - \cos(\phi) - 0 \\ & 0 - 1) \end{split}$$

5. Improper rotation S_n: this is a C_n rotation followed by reflection $\sigma_{\rm h}$.
Therefore, for the rotation in 4): $\mathbf{e}_3 \to -\mathbf{e}_3$
$$(i) = \int_{0}^{\infty} \widetilde{S}_n = \begin{pmatrix} \cos(\phi) - \sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Note: all $\Gamma(R)$ for the symmetry operations are real orthogonal matrices.

$$\Rightarrow \Gamma(R)^T \Gamma(R) = \widetilde{E}$$

where $\Gamma(R)^{T}$ = transpose of $\Gamma(R)$

 $\Longrightarrow \Gamma(R)^{-1} = \Gamma(R)^{T}$ is readily calculated.

Note:
$$\vec{r}' = R\vec{r} = R\langle e \mid r \rangle = \langle e' \mid r \rangle = \langle e' \mid \Gamma(R) \mid r \rangle = \langle e \mid r' \rangle$$

Symmetry transformations are rigid. The length of all vectors and angles between them remain unchanged.

C734b Matrix Representations

19

C734b Matrix Representations

<text><equation-block><equation-block><equation-block><equation-block><text><text><text><text>

c) When **T** acts on a physical systems (atom, molecule, etc) a Q.M. operator **M** corresponding to a dynamical variable becomes:

$$\hat{M}' = \hat{T}M\hat{T}'$$

Expectation values are invariant under symmetry operators.

$$\Rightarrow \hat{T}\hat{M}\hat{T}^{+} = \hat{M} \Rightarrow \left[\hat{T}, \hat{M}\right] = 0$$

_

Q.M. operator for the energy of a system is the Hamiltonian operator **H**. This means **T** must commute with **H**.

The set of all function operators $\{T\}$ that leaves **H** invariant and which form a group isomorphic with the symmetry operators $\{T\}$ is known as "the group of the Hamiltonian" or "the group of the Schrodinger equation".

C734b Matrix Representations

