Normal Modes of Vibration

C734b 2008

[^0]Normal coordinates, Q_{k}, are linear combinations of atomic displacements $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}$ from the equilibrium positions of the atoms.
$\left\{\mathrm{Q}_{\mathrm{k}}\right\}$ are properties of the molecules and are determined by molecular symmetry \rightarrow each transforms according to one or other IR of the molecular point group.

To find the normal modes study the transformation of the atomic displacements $\left\{\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)$ by setting up a local basis set $\left(\mathrm{e}_{\mathrm{i} 1} \mathrm{e}_{\mathrm{i} 2} \mathrm{e}_{\mathrm{is}}\right)$ on each atom.

Example: $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{2 \mathrm{v}}\right) \quad 3 \mathrm{~N}=3 \times 3=9$ vectors

Molecule lies in the yz plane $\mathrm{C}_{2 \mathrm{v}}:\left\{\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{v}}(\mathrm{xz}), \sigma_{\mathrm{v}}{ }^{\prime}(\mathrm{xz})\right.$
$\Gamma(\mathrm{R})$ will be a 9 x 9 matrix

$$
\Gamma(E)=\left(\begin{array}{lll|llllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \leftarrow \text { atom } 1
$$

$$
\chi(E)=9
$$

$$
\begin{aligned}
& \Gamma\left(\mathrm{C}_{2}\right): \mathrm{x}_{1} \rightarrow-\mathrm{x}_{3} \quad \mathrm{x}_{2} \rightarrow-\mathrm{x}_{2} \quad \mathrm{x}_{3} \rightarrow-\mathrm{x}_{1} \\
& y_{1} \rightarrow-y_{3} \quad y_{2} \rightarrow-y_{2} \quad y_{3} \rightarrow-y_{1} \\
& \begin{array}{lll}
\mathrm{z}_{1} \rightarrow \mathrm{z}_{3} & \mathrm{z}_{2} \rightarrow \mathrm{z}_{2} & \mathrm{z}_{3} \rightarrow \mathrm{z}_{3}
\end{array} \\
& \Gamma\left(C_{2}\right)=\left(\begin{array}{cccccc|ccc}
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \leftarrow \operatorname{atom} 3 \\
& \chi\left(C_{2}\right)=-1
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma\left[\sigma_{v}(\mathrm{xz})\right]: \quad \begin{array}{lll}
\mathrm{x}_{1} \rightarrow \mathrm{x}_{3} \\
\mathrm{y}_{1} \rightarrow-\mathrm{y}_{3}
\end{array} \quad \begin{array}{l}
\mathrm{x}_{2} \rightarrow \mathrm{x}_{2} \\
\mathrm{y}_{2} \rightarrow-\mathrm{y}_{2}
\end{array} \quad \begin{array}{l}
\mathrm{x}_{3} \rightarrow \mathrm{x}_{1} \\
\mathrm{y}_{3} \rightarrow-\mathrm{y}_{1}
\end{array} \\
& \begin{array}{lll}
\mathrm{y}_{1} \rightarrow-\mathrm{y}_{3} \\
\mathrm{z}_{1} \rightarrow \mathrm{z}_{3}
\end{array} \quad \begin{array}{l}
\mathrm{y}_{2} \rightarrow-\mathrm{y}_{2} \\
\mathrm{z}_{2} \rightarrow \mathrm{z}_{2}
\end{array} \quad \begin{array}{l}
\mathrm{y}_{3} \rightarrow-\mathrm{y}_{1} \\
\mathrm{z}_{3} \rightarrow \mathrm{z}_{1}
\end{array} \\
& \Gamma\left(\sigma_{v}(x z)\right)=\left(\begin{array}{cccccc|ccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & \begin{array}{|ccccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array} 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \leftarrow \operatorname{atom} 3 \\
& \chi\left[\sigma_{v}(x z)\right]=+1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\Gamma\left[\sigma_{v}{ }^{\prime}(\mathrm{yz})\right]: & \mathrm{x}_{1} \rightarrow-\mathrm{x}_{1} & \mathrm{x}_{2} \rightarrow-\mathrm{x}_{2} & \mathrm{x}_{3} \rightarrow-\mathrm{x}_{3} \\
& \mathrm{y}_{1} \rightarrow \mathrm{y}_{1} & \mathrm{y}_{2} \rightarrow \mathrm{y}_{2} & \mathrm{y}_{3} \rightarrow \mathrm{y}_{3} \\
& \mathrm{z}_{1} \rightarrow \mathrm{z}_{1} & \mathrm{z}_{2} \rightarrow \mathrm{z}_{2} & \mathrm{z}_{3} \rightarrow \mathrm{z}_{3}
\end{array} \\
& \mathrm{z}_{1} \rightarrow \mathrm{z}_{1} \quad \mathrm{z}_{2} \rightarrow \mathrm{z}_{2} \quad \mathrm{z}_{3} \rightarrow \mathrm{z}_{3} \\
& \Gamma\left(\sigma_{\dot{v}}(y z)\right)=\left(\begin{array}{ccc|cccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \leftarrow \text { atom } 1 \\
& \chi\left[\sigma_{v}(y z)\right]=+3
\end{aligned}
$$

Reducible character set is:
$\chi=\{9,-1,+1,+3\}$
Don't want to do this for large molecules!
Shortcut: recognize that $\chi(\mathrm{R})$ contribution $=0$ from atoms which move because they contribute only to off-diagonal matrix elements.
Let $N_{R}=\#$ atoms which do not move for a given symmetry operation, R.

$$
\therefore \chi(R)=\chi_{\Gamma_{x, y, z}} \cdot N_{R}
$$

$$
\chi_{\Gamma_{x, y, z}}=\text { character representation for }(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

This may require doing a direct sum
$\Gamma_{x, y, z}\left(C_{2 v}\right)=A_{1} \oplus B_{1} \oplus B_{2} \quad$ Can read this off the character table

$$
\Rightarrow \chi_{\Gamma_{x, y, z}}=\{3,-1,+1,+1\} \quad \Rightarrow \chi_{\Gamma_{x, y, z}} \cdot N_{R}=\{3 \times 3,-1 \times 1,+1 \times 1,+1 \times 3\}
$$

$$
=\{9,-1,1,3\} \equiv \text { same reducible representation as before. }
$$

Do reduction in $\mathrm{C}_{2 \mathrm{v}}$
$a_{1}=\frac{1}{4}[(9)(1)(1)+(1)(-1)(1)+(1)(1)(1)+(3)(1)(1)]=3$
$a_{2}=\frac{1}{4}[(9)(1)(1)+(1)(-1)(1)+(1)(-1)(1)+(3)(1)(-1)]=1$
$b_{1}=\frac{1}{4}[(9)(1)(1)+(1)(-1)(-1)+(1)(1)(1)+(3)(1)(-1)]=2$
$b_{2}=\frac{1}{4}[(9)(1)(1)+(1)(-1)(-1)+(1)(-1)(1)+(3)(1)(1)]=3$

$$
\therefore \Gamma_{\text {total }}=3 A_{1} \oplus A_{2} \oplus 2 B_{1} \oplus 3 B_{2}
$$

From character table: $\quad \Gamma_{\text {translation }}$ transforms as $\Gamma_{x} \oplus \Gamma_{y} \oplus \Gamma_{z}=B_{1} \oplus B_{2} \oplus A_{1}$
$\Gamma_{\text {rotation }}$ transforms as $\Gamma_{R_{x}} \oplus \Gamma_{R_{y}} \oplus \Gamma_{R_{z}}=B_{2} \oplus B_{1} \oplus A_{2}$

Subtract from $\Gamma_{\text {total }}=\Gamma_{\text {vib }}=\Gamma_{\text {total }}-\Gamma_{\text {translation }}-\Gamma_{\text {rotation }}$
$\Rightarrow \Gamma_{\text {vib }}=2 A_{1} \oplus B_{2} \quad$ Note: $3 \mathrm{~N}-6=3$ for $\mathrm{H}_{2} \mathrm{O} \equiv \#$ modes deduced!

Allowed transitions

It can be shown that the transformation of atomic displacements $\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right\}$ to a set of normal coordinates $\left\{\mathrm{Q}_{\mathrm{k}}\right\}$ results in a Hamiltonian which is a sum of one-dimensional harmonic oscillators.

Therefore the wave function is a product of 1D harmonic oscillator wave functions:

$$
\psi_{n_{k}} \equiv\left|n_{k}\right\rangle=N_{k} H_{n_{k}}\left(\gamma_{k} Q_{k}\right) e^{-\frac{\gamma_{k}^{2} Q_{k}^{2}}{2}}
$$

where $\quad \gamma_{k}=\frac{\omega_{k}}{\hbar} \quad$ and $\mathrm{n}_{\mathrm{k}} \equiv$ vibrational quantum number of the $\mathrm{k}^{\text {th }}$ mode.

$$
\begin{aligned}
& \Rightarrow \psi_{n_{1}, n_{2}, \cdots}\left(Q_{1}, Q_{2}, \cdots\right)=\prod_{k=1}^{3 N-\binom{5}{6}} \psi_{n_{k}}\left(Q_{k}\right) \\
& \left|n_{1}, n_{2}, \cdots\right\rangle=\left|n_{1}\right\rangle\left|n_{2}\right\rangle \cdots=\prod_{k}\left|n_{k}\right\rangle
\end{aligned}
$$

Typically, most molecules are in their ground vibrational ground state where $n_{k}=0$ for $\mathrm{k}=1, \ldots, 3 \mathrm{~N}-6$ or $3 \mathrm{~N}-5$

Note: $\mathrm{H}_{0} \equiv$ constant $\quad \Rightarrow \psi=\prod_{k} e^{-\frac{\gamma^{2} Q_{k}^{2}}{2}}$
which is invariant under any point symmetry operation; that is, its totally symmetric.

Ground states of all normal modes transform as the totally symmetric IR of the point group of the molecule

Excited vibrational state symmetry is determined by the symmetry products of the particular Hermite polynomials of the normal mode(s) involved.

Most common transitions are fundamental transition where only a single vibrational mode is excited.

$$
\begin{aligned}
& \Delta n_{i}=0 ; \quad n_{i} \neq n_{k} \quad \Delta n_{k}=1 \\
& \Rightarrow|0,0, \cdots, 0, \cdots, 0\rangle \rightarrow|0,0, \cdots, 1, \cdots, 0\rangle
\end{aligned}
$$

Note: $H_{1}(x)=2 x$ which means the ground state transforms like Γ_{1} and the excited state transforms like Q_{k}.
Transitions are induced by infrared radiation. The operator responsible is the electric dipole moment operator, \mathbf{D}.

$$
\hat{D}=-e \vec{r}
$$

A transition is allowed if the matrix element $\langle 0,0, \cdots, \cdots, 0| \hat{D}|0,0, \cdots, 0, \cdots, 0\rangle \neq 0$

Thus:
A fundamental transition is allowed only if the normal coordinate Q_{k} for that mode forms a basis for the same IR as x, y, and/or, z .

For water in $C_{2 v}, A_{1}$ transforms as z, B_{1} transforms as x, and B_{2} transforms as y.

$$
\because \Gamma_{\mathrm{vib}}=2 A_{1} \oplus B_{2} \text { all } 3 \text { vibrations are allowed. }
$$

Note: only light polarized along the z -axis and the y axis will excite water.
Not an issue in gases or liquids since
i) the light sources are often incoherent sources (random polarizations), and
ii) the molecules tumble about. Such polarization effects could arise using lasers and exciting solid samples whose orientation have been fixed.
It can also have a bearing on samples adsorbed onto surfaces.

Raman Scattering

Raman scattering is an inelastic scattering process.
Photon looses (or gains) one quantum of vibrational energy to (or from) the molecule.
Here, the electric field of the light indices an electric dipole in the molecule, a process that depends on the polarizability of the molecule, α.

$$
\Rightarrow \vec{D}=\alpha \vec{E}
$$

α is a tensor which has the form: $\left(\begin{array}{lll}\alpha_{x x} & \alpha_{x y} & \alpha_{x z} \\ \alpha_{y x} & \alpha_{y y} & \alpha_{y z} \\ \alpha_{z x} & \alpha_{z y} & \alpha_{z z}\end{array}\right) \quad \alpha_{\mathrm{ij}}=\alpha_{\mathrm{ji}}$

The components of the polarizability transform like the binary products of coordinates, $\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{xz}$, etc.

Thus:
A fundamental transition is Raman active if a normal mode forms a basis for one or more components of the polarizability

For $\mathrm{H}_{2} \mathrm{O} \mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}$, and B_{2} are all Raman active. This means there are 3 Raman bands and therefore 3 coincidences with the infrared absorption spectrum.
Here coincidence implies the same frequency.

Some general points:
1.) If the symmetry of the molecule is lowered by a perturbation, this may remove degeneracies and/or permit transitions that were forbidden in the more symmetric molecule.
2.) The number of Raman and infrared bands can sometimes be used to distinguish between various structures.
3.) Molecules having an inversion center will have Raman and infrared bands but no coincidences.
C734b 2008 Normal Modes of
Vibration $\quad 15$
4.) Stretching modes (for example $\mathrm{C}=\mathrm{O}$ bonds) can often be analyzed separately because they come in a characteristic region of the infrared spectrum.

This means a full vibrational analysis is unnecessary. Instead, study the transformation of the unit vectors directed along the appropriate ligands.

For example: $\mathrm{ML}_{3}(\mathrm{CO})_{3}$

It is only necessary to study the 3 vectors in $\mathrm{C}_{2 \mathrm{v}}$ symmetry to determine the symmetry of the CO stretching modes.

Example: Consider the case of $\mathrm{Fe}(\mathrm{CO})_{5}$

Raman and IR spectra of the molecule in the region of the CO stretches.

The molecule can have two geometries. Do these spectra help to distinguish them?

The spectra is most consistent with $\mathrm{Fe}(\mathrm{CO})_{5}$ having a $\mathrm{D}_{3 \mathrm{~h}}$ geometry.
This was ultimately confirmed to be the case by X-ray crystallography.

[^0]: Internal vibrational modes of a molecule containing N atoms is made up of the superposition of $3 \mathrm{~N}-(5$ or 6$)$ simple harmonic vibrations called normal modes
 -5 for linear molecules \equiv (3 translations +2 rotations)
 -6 for nonlinear molecules \equiv (3 translations +3 rotations)

