Correlation Diagrams

C734b 2008

Spin Postulate

An electron possesses an intrinsic angular momentum in addition to its normal orbital angular momentum $\mathbf{L} \equiv \mathbf{S}$

Electrons exhibit a magnetic moment $\vec{\mu}$ where

$$
\vec{\mu}=-g_{e} \vec{S}\left(\frac{\mu_{B}}{\hbar}\right)=-g_{e} \vec{S}\left(\frac{e}{2 m_{e}}\right)
$$

where $m_{e} \equiv$ mass of the electron and $\mu_{B} \equiv$ Bohr magneton

$$
\mu_{B}=\frac{e \hbar}{2 m_{e}}=0.9274 \times 10^{-23} \mathrm{JT}^{-1}
$$

$\mathrm{S}=1 / 2$ for electrons and $\mathrm{g}_{\mathrm{e}}=2.00232$
\mathbf{S} is an angular momentum like \mathbf{L} with components $\mathrm{S}_{\mathrm{x}}, \mathrm{S}_{\mathrm{y}}$ and S_{z} and associated self-adjoint operators:
$\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}, \hat{S}^{2}$ which obey similar commutation relationships as $\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}, \hat{L}^{2}$ $\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}$ all commute with \hat{S}^{2} but not with each other

Only one component, say \hat{S}_{z} can have a common set of eigenfunctions with \hat{S}^{2}

Note: $\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}, \hat{S}^{2} \neq \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ which means they commute with $\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}, \hat{L}^{2}$

Total angular momentum of electrons $\equiv \vec{J}=\vec{L}+\vec{S}$ where \hat{J}_{i}, \hat{J}^{2} obey similar commutation relationships as \hat{L}_{i}, \hat{L}^{2}

For any angular momentum $\overrightarrow{\mathrm{A}}$
Can define raising and lowering operators $\hat{\mathrm{A}}^{+}, \hat{\mathrm{A}}^{-}$as

$$
\begin{aligned}
& \hat{A}^{+}=\hat{A}_{x}+i \hat{A}_{y} \\
& \hat{A}^{-}=\hat{A}_{x}-i \hat{A}_{y}
\end{aligned}
$$

Let the eigenfunctions of \hat{A}^{2} and \hat{A}_{z} be $\left|j_{a}, m_{a}\right\rangle$ with eigenvalues $\mathrm{j}_{\mathrm{a}}\left(\mathrm{j}_{\mathrm{a}}+1\right) \hbar^{2}$ and $\mathrm{m}_{\mathrm{a}} \hbar \quad$ respectively.

$$
\mathrm{m}_{\mathrm{a}} \text { ranges from }-\mathrm{j}_{\mathrm{a}} \text { to }+\mathrm{j}_{\mathrm{a}} \text { in integer steps. }
$$

Can show that: $\hat{\mathrm{A}}^{ \pm}\left|\mathrm{j}_{\mathrm{a}}, \mathrm{m}_{\mathrm{a}}\right\rangle=\hbar \sqrt{\mathrm{j}_{\mathrm{a}}\left(\mathrm{j}_{\mathrm{a}}+1\right)-\mathrm{m}_{\mathrm{a}}\left(\mathrm{m}_{\mathrm{a}} \pm 1\right)}\left|\mathrm{j}_{\mathrm{a}}, \mathrm{m}_{\mathrm{a}} \pm 1\right\rangle$

Since $\overrightarrow{\mathrm{s}}=\frac{1}{2} \quad$ for electrons $\left\langle\mathrm{s}^{2}\right\rangle=\mathrm{s}(\mathrm{s}+1) \hbar^{2}=\frac{3}{4} \hbar^{2}$ and $\left\langle\mathrm{m}_{\mathrm{s}}\right\rangle=\mathrm{m}_{\mathrm{s}} \hbar= \pm \frac{1}{2} \hbar$

The two spin eigenvectors are: $\left|\mathrm{s}, \mathrm{m}_{\mathrm{s}}\right\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle \equiv \alpha$ (spin up)

$$
\begin{aligned}
& \text { and }\left|s, m_{s}\right\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle \equiv \beta \text { (spin down) } \\
& \left\langle\frac{1}{2}, \left. \pm \frac{1}{2} \right\rvert\, \frac{1}{2}, \pm \frac{1}{2}\right\rangle=1 \quad \text { and } \quad\left\langle\frac{1}{2}, \left. \pm \frac{1}{2} \right\rvert\, \frac{1}{2}, \mp \frac{1}{2}\right\rangle=0
\end{aligned}
$$

Spin functions are orthonormal: normalized and orthogonal.

Spherical Symmetry for many electron atoms (N)

Hamiltonian is given by: $\hat{H}=\hat{H}_{o}+\hat{H}_{e e}+\hat{\mathrm{H}}_{\hat{\mathrm{L}} \cdot \overrightarrow{\mathrm{s}}}$
$\hat{\mathrm{H}}_{\mathrm{o}} \equiv$ kinetic energy of electrons and the e^{-}- nucleus interactions

If $\hat{H}=\hat{H}_{o}$ alone $\Rightarrow \psi(1,2, \cdots, \mathrm{~N})=\psi(1) \psi(2) \cdots \psi(\mathrm{N})$
with each one e^{-}state characterized by 4 quantum numbers, $\mathrm{n}, \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}$
$\hat{\mathrm{H}}_{\mathrm{ee}} \equiv$ electron - electron interaction which couples angular momenta of the individual electrons in 2 possible ways

Low "Z" elements (Z ~<40)

$$
\overrightarrow{\mathrm{L}}=\sum_{\mathrm{i}} \vec{\ell}_{\mathrm{i}} \quad \overrightarrow{\mathrm{~S}}=\sum_{\mathrm{i}} \overrightarrow{\mathrm{~s}}_{\mathrm{i}}
$$

Spin-orbit interactions couples \vec{L} and \vec{S} to form $\vec{J}=\vec{L}+\vec{S}$

三 Russell-Saunders coupling

High "Z" elements (Z > 40)

Orbital and spin angular momenta of each electron couples first:
$\overrightarrow{\mathrm{j}}_{\mathrm{i}}=\vec{\ell}_{\mathrm{i}}+\overrightarrow{\mathrm{s}}_{\mathrm{i}} \equiv$ total angular momenta of each individual electron.

These then couple to total $\overrightarrow{\mathrm{J}}=\sum_{\mathrm{i}} \overrightarrow{\mathrm{j}}_{\mathrm{i}}$
三 j-j coupling

Note: can have intermediate coupling for intermediate Z although L-S (Russell-Saunders) scheme is often used as a first approximation.

Note: For low $\mathrm{Z} \quad \hat{\mathrm{H}}_{\mathrm{ee}}>\hat{\mathrm{H}}_{\mathrm{L} . \overline{\mathrm{S}}}$

$$
\text { For high } \mathrm{Z} \quad \hat{\mathrm{H}}_{\mathrm{ee}}<\hat{\mathrm{H}}_{\overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{~s}}} \because \overrightarrow{\mathrm{~L}} \cdot \overrightarrow{\mathrm{~S}} \sim \alpha^{2} \mathrm{Z}^{2}
$$

$$
\alpha^{2} \equiv \text { fine-structure constant }=7.29735 \times 10^{-3} \sim 1 / 137
$$

Coupled energy states in Russell-Saunders coupling are called multiplets and these are described by spectral terms of the form ${ }^{2 S+1} \mathrm{~L}$

spin multiplicity $\equiv 2 \mathrm{~S}+1$

How to get L or S?

Given any angular momenta \vec{A}_{1} and \vec{A}_{2}

$$
\begin{gathered}
\overrightarrow{\mathrm{A}}=\mathrm{A}_{1}+\mathrm{A}_{2}, \mathrm{~A}_{1}+\mathrm{A}_{2}-1, \cdots\left|\mathrm{~A}_{1}-\mathrm{A}_{2}\right| \\
\mathrm{m}_{\mathrm{a}}=-\mathrm{A},-\mathrm{A}+1, \cdots,+\mathrm{A}
\end{gathered}
$$

If there are >2 angular momenta, couple A_{1} and $\mathrm{A}_{2} \rightarrow \mathrm{~A}_{12}$, then $\mathrm{A}_{12}+\mathrm{A} \rightarrow \mathrm{A}_{123}$, etc.

The effect of spin-orbit interactions is to split the multiplets into their components with term symbols: ${ }^{2 S+1} \mathrm{~L}_{\mathrm{J}}$

Spin-orbit splitting: $\Delta \mathrm{E}_{\overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{s}}}=\frac{1}{2} \xi(\mathrm{~L}, \mathrm{~S})[\mathrm{J}(\mathrm{J}+1)-\mathrm{L}(\mathrm{L}+1)-\mathrm{S}(\mathrm{S}+1)]$
where $\xi(L, S) \equiv$ spin-orbit coupling constant >0 for $<1 / 2$-filed shells
\rightarrow smallest J lies lowest in energy

If $\xi<0$ for $>1 / 2$-filled shells \rightarrow largest J lies lowest in energy

三 Hund's third rule

Example: (ns) ${ }^{1}(\mathrm{np})^{1}$ configuration

$$
\begin{aligned}
& \ell_{1}=0 ; \ell_{2}=1 \quad \Rightarrow \quad \mathrm{~L}=1 \\
& s_{1}=1 / 2 ; s_{2}=1 / 2 \Rightarrow \quad \mathrm{~S}=1,0
\end{aligned}
$$

\Rightarrow terms are ${ }^{3} \mathrm{P},{ }^{1} \mathrm{P}$

$$
\begin{aligned}
& \text { When } \mathrm{S}=0, \mathrm{~L}=1, \mathrm{~J}=1 \quad \Rightarrow \quad{ }^{1} \mathrm{P}_{1} \\
& \text { When } \mathrm{S}=1, \mathrm{~L}=1, \mathrm{~J}=2,1,0 \Rightarrow \quad{ }^{3} \mathrm{P}_{2,1,0} \\
& \text { Correlation Diagrams C734b } 2008
\end{aligned}
$$

$-\mathbf{H}_{\mathrm{ee}}$ has 2 parts: a Coulomb repulsion J and an exchange interaction $\pm \mathrm{K}$ which is non-classical and is a consequence of the Pauli-Exclusion Principle which requires the total wave function to be antisymmetric with respect to the interchange of two spin $1 / 2$ particles (electrons which are fermions).
$\Rightarrow(\mathrm{ns})^{1}(\mathrm{np})^{1}$
H_{o}
$\mathbf{H e e}_{\text {ee }}$
$\mathbf{H}_{\mathrm{L} . \mathrm{S}}$

Intermediate Crystal Fields (low Z elements)

Let $\mathbf{H}_{\mathrm{CF}} \equiv$ term in the Hamiltonian which describes the electrostatic interaction with the surrounding ions or ligands.

$$
\text { if } \quad \hat{\mathrm{H}}_{\mathrm{CF}}>\hat{\mathrm{H}}_{\mathrm{ee}} \Rightarrow \quad \text { strong crystal field }
$$

if $\quad \hat{H}_{\mathrm{ee}}>\hat{\mathrm{H}}_{\mathrm{CF}}>\hat{\mathrm{H}}_{\overrightarrow{\mathrm{L} \cdot \mathrm{S}}} \Rightarrow \quad$ intermediate crystal field
if $\quad \hat{\mathrm{H}}_{\mathrm{CF}}<\hat{\mathrm{H}}_{\overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{S}}} \Rightarrow$ weak crystal field
-Consider an atomic term with angular momentum L. A representation, D_{L}, for any group of proper rotations can be found using angular momentum eigenfunctions: spherical harmonics $\left\{\mathrm{Y}_{\mathrm{L}}{ }^{\mathrm{M}}\right\}$ as a $2 \mathrm{~L}+1$ degenerate basis set.

Note: here D_{L} instead of Γ_{L} is used for historical reasons.

Can show: $\quad \hat{R}(\alpha) Y_{\mathrm{L}}^{\mathrm{M}}(\theta, \varphi)=\mathrm{Y}_{\mathrm{L}}^{\mathrm{M}}\left(\mathrm{R}^{-1}\{\theta, \varphi\}\right)$

$$
=\mathrm{Y}_{\mathrm{L}}^{\mathrm{M}}(\theta, \varphi-\alpha)=\mathrm{e}^{-\mathrm{i} \mathrm{M} \alpha} \mathrm{Y}_{\mathrm{L}}^{\mathrm{M}}(\theta, \varphi)
$$

This means each member is transformed into itself multiplied by a numerical coefficient $\mathrm{e}^{-\mathrm{i} M \alpha}$

$$
\begin{gathered}
\therefore \mathrm{D}_{\mathrm{L}}(\alpha)=\left(\begin{array}{cccc}
\mathrm{e}^{-\mathrm{i} L \alpha} & 0 & \cdots & 0 \\
0 & \mathrm{e}^{-\mathrm{i}(\mathrm{~L}-1) \alpha} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mathrm{e}^{\mathrm{i} L \alpha}
\end{array}\right) \\
\Rightarrow \chi\left(\mathrm{D}_{\mathrm{L}}(\alpha)\right)=\mathrm{e}^{-\mathrm{i} L \alpha} \sum_{\mathrm{p}=0}^{2 \mathrm{~L}} \mathrm{e}^{\mathrm{i} \alpha \alpha} \quad=\mathrm{e}^{-\mathrm{i} L \alpha} \frac{\left(\mathrm{e}^{\mathrm{i}(2 \mathrm{~L}+1) \alpha}-1\right)}{\mathrm{e}^{\mathrm{i} \alpha}-1} \quad \times \frac{\mathrm{e}^{-\frac{\mathrm{i} \alpha}{2}}}{\mathrm{e}} \quad \mathrm{e}^{-\frac{\mathrm{i} \alpha}{2}}
\end{gathered}
$$

a geometric progression

$$
\Rightarrow \chi\left(D_{L}(\alpha)\right)=\frac{\sin \left[\frac{(2 L+1) \alpha}{2}\right]}{\sin \left(\frac{\alpha}{2}\right)}
$$

Can calculate the character system for any group of rotations for any L , and if reducible, can do this in the usual way into a direct sum of IRs
Note: for $\chi(E) \quad$ As $\alpha \rightarrow 0 \lim _{\alpha \rightarrow 0} \frac{\sin \frac{[(2 L+1) \alpha]}{2}}{\sin \left(\frac{\alpha}{2}\right)}=\lim _{\alpha \rightarrow 0} \frac{(2 L+1) \alpha}{\alpha}=2 L+1$

Splitting of states of angular momentum L in an intermediate cryptel field

$$
x\left[D_{L}(\alpha)\right]=\frac{\sin \left[\left(L+\frac{1}{2}\right) \alpha\right]}{\sin \left(\frac{1}{2} \alpha\right)}
$$

Therefore:-

$$
\begin{aligned}
& x\left(c_{2}\right)=\frac{\sin \left[\left(L+\frac{1}{2}\right) \pi\right]}{\sin \left(\frac{1}{2} \pi\right)}=(-1)^{L} \\
& x\left(c_{3}\right)=\frac{\sin \left[\left(L+\frac{1}{2}\right) \frac{2}{3} \pi\right]}{\sin (\pi / 3)}=\left\{\begin{array}{cc}
1 & \text { for } L=0,3, \cdots \\
0 & \text { for } L=1,4, \cdots \\
-1 & \text { for } L=2,5, \cdots
\end{array}\right. \\
& x\left(c_{4}\right)=\frac{\sin \left[\left(L+\frac{1}{2}\right) \frac{\pi}{2}\right]}{\sin (\pi / 4)}= \begin{cases}1 & \text { for } L=0,1,4,5, \cdots \\
-1 & \text { for } L=2,3,6,7, \cdots\end{cases} \\
& x(E)=2 L+1
\end{aligned}
$$

State		D_{L}
		D_{0}
P		D_{1}
D		D_{2}
F		D_{3}
G		D_{4}

Direct sum in cubic field

A_{1}				
T_{1}				
E	T_{2}			
$A_{2} \oplus T_{1} \oplus T_{2}$				
$A_{1} \oplus$	E	\oplus	$T_{1} \oplus T_{2}$	

The splitting of states in lover symmetries is grin in Table correlation tables an example of which is in Table

Table shows $\chi\left(D_{L}\right)$ for $\alpha=\pi / 2,2 \pi / 3$, and π and the splitting of the free ion states in O_{h} symmetry for $\mathrm{L} \geq 2$

Splittings in lower symmetries deduced from correlation tables, or by finding direct sums using common classes in both groups.

Parity

If inversion, i, is a group operation then the wave function ψ will have definite parity.
Parity \equiv eigenvalue of the inversion operator.

$$
\hat{i} \psi=\lambda \psi= \pm \psi
$$

If $\quad \hat{i} \psi=+\psi \Rightarrow$ even or gerade \equiv g-parity
If $\quad \hat{i} \psi=-\psi \Rightarrow$ odd or ungerade \equiv u-parity

The parity of $\quad \mathrm{Y}_{\ell}^{\mathrm{m}}(\theta, \varphi)=(-1)^{\ell}$

$$
\Rightarrow \quad \begin{gathered}
\\
\\
\text { parity }=
\end{gathered} \begin{array}{ccccc}
\mathrm{s} & \mathrm{p} & \mathrm{~d} & \mathrm{f} \\
0 & 1 & 2 & 3 \\
+1 & -1 & +1 & -1
\end{array}
$$

For several electrons: $\psi(1,2,3, \ldots, N)=\psi(1) \psi(2) \cdots \psi(N)$

$$
\text { parity }=\prod_{\mathrm{i}}(-1)^{\ell_{\mathrm{i}}}=(-1)_{\mathrm{i}}^{\sum_{\mathrm{i}} \ell_{\mathrm{i}}}
$$

This means the parity is determined by the electron configuration, NOT on the total orbital angular momentum, L.

Example: \quad nsnp \Rightarrow parity $=(-1)^{0+1}=-1 \Rightarrow$ all terms are u-states

$$
\begin{gathered}
\mathrm{nd}^{2} \Rightarrow \text { parity }=(-1)^{2+2}=+1 \Rightarrow \text { all terms are } \mathrm{g}-\text { states } \\
\mathrm{npn} \mathrm{p} \Rightarrow \text { parity }=(-1)^{1+1}=+1 \Rightarrow \text { all terms are } \mathrm{g}-\text { states }
\end{gathered}
$$

Now, if $i \in G$ and the parity is even $\Rightarrow \chi\left[D_{L}{ }^{+}(i I R)\right]=\chi\left\lfloor D_{L}{ }^{+}(I R)\right\rfloor$
If the parity is odd $\Rightarrow \chi\left[D_{L}^{-}(i I R)\right]=-\chi\left\lfloor D_{L}^{-}(I R)\right\rfloor$

Character table will have the form given by the following example for O_{h}

$$
\mathrm{O}_{\mathrm{h}}=\mathrm{O} \otimes \mathrm{C}_{i}
$$

Therefore, need only consider $\{\mathrm{O}\}$ and work out parities later.

Example:

a) Into what states does the Russell-Saunders term $\mathrm{d}^{2}:{ }^{3} \mathrm{~F}$ split in O_{h} symmetry?
b) What is the effect of a D_{3} trigonal distortion?
a) ${ }^{3} \mathrm{~F} \rightarrow \mathrm{~L}=3, \mathrm{~S}=1$. Since S is unaffected by electrostatic fields (only by magnetic fields), triplet terms in the free ion remain triplets in O_{h} symmetry

Parity $=(-1)^{2+2}=+1 \rightarrow \mathrm{~g}$ terms.

From table given for $D_{L} L=3$: states are ${ }^{3} A_{2 g},{ }^{3} \mathrm{~T}_{1 g},{ }^{3} \mathrm{~T}_{2 \mathrm{~g}}$
b) Select classes that are common to both groups and reduce the IR from the group of higher symmetry in the group of lower symmetry

From character tables:

O	E	$8 \mathrm{C}_{3}$	$6 \mathrm{C}_{2}^{\prime}$
A_{2}	1	1	-1
$\mathrm{~T}_{1}$	3	0	-1
$\mathrm{~T}_{2}$	3	0	1

D_{3}	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}^{\prime}$
A_{1}	1	1	1
$\mathrm{~A}_{2}$	1	1	-1
E	2	-1	0

Find from reduction: \quad| O | D_{3} |
| :---: | :---: |
| | $\mathrm{~A}_{2}$ |
| | $\mathrm{~A}_{2}$ |
| | $\mathrm{~T}_{1}$ |
| $\mathrm{~A}_{2} \oplus \mathrm{E}$ | |
| | T_{2} | $\mathrm{~A}_{1} \oplus \mathrm{E}$

This is the way correlation tables are derived. Procedure can be used if such tables are not available.

This table shows how the representations of O_{h} are re-labelles or reduced when the symmetry is lowered. For a more extensure setseeTable $X-14$ in Molecular Vibrations by E.B. Wilson, gr., J.C.Decins, and P.C. Cross, Mc Goa Hill, New York, 1955.

Strong Crystal Fields

-one where electrostatic interactions due to ion surrounding > electron-electron interactions in ion.
\Rightarrow Consider the effect on free ion electron configurations and deduce states and their degeneracies

Later: will correlate "strong" to "intermediate CFs.

In O_{h} symmetry 5 d orbitals $\rightarrow \mathrm{t}_{2 \mathrm{~g}}\left(\mathrm{~d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{yz}}, \mathrm{d}_{\mathrm{xz}}\right)+\mathrm{e}_{\mathrm{g}}\left(\mathrm{d}_{\mathrm{z} 2}, \mathrm{~d}_{\mathrm{x} 2-\mathrm{y} 2}\right)$ and $\mathrm{E}\left(\mathrm{t}_{2 \mathrm{~g}}\right)<\mathrm{E}\left(\mathrm{e}_{\mathrm{g}}\right)$ since these orbitals "point" at the ligands.

Opposite scenario occurs in T_{d} symmetry where $\mathrm{E}\left(\mathrm{e}_{\mathrm{g}}\right)<\mathrm{E}\left(\mathrm{t}_{2 \mathrm{~g}}\right)$

To determine states in a strong field, use Bethe's method of Descending Symmetry

Method based on:
(i) Electrostatic fields don't affect spin
(ii) If $\psi(1,2)=\psi^{i}(1) \psi^{j}(2)$ and $\psi^{i}(1)$ forms a basis for Γ_{i} and $\psi^{j}(2)$ forms a basis for Γ_{j} means $\psi^{i}(1) \psi^{j}(2)$ forms a basis for the direct product $\Gamma^{i} \otimes \Gamma^{j}$

Due to Pauli Exclusion Principle:
(1) 2 electrons in the same orbital generates a singlet state only.
(2) 2 electrons in different orbitals generates a singlet and a triplet state.

Example:

Find all states that forma d^{2} configuration in a strong field of O_{h} symmetry. Correlate with those of the free ion and those of an ion in an intermediate field.

Configurations are $\left(\mathrm{t}_{2 \mathrm{~g}}\right)^{2},\left(\mathrm{t}_{2 \mathrm{~g}}\right)^{1}\left(\mathrm{e}_{\mathrm{g}}\right)^{1}$ and $\left(\mathrm{e}_{\mathrm{g}}\right)^{2}$
Parity of d^{2} terms $\equiv \mathrm{g}$. Simply use O character table to reduce direct products

O character table:

O	E	$8 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	$6 \mathrm{C}_{4}$	$6 \mathrm{C}_{2}^{\prime}$
A_{1}	1	1	1	1	1
$\mathrm{~A}_{2}$	1	1	1	-1	-1
E	2	-1	2	0	0
$\mathrm{~T}_{1}$	3	0	-1	1	-1
$\mathrm{~T}_{2}$	3	0	-1	-1	1

Consider $\left(\mathrm{e}_{\mathrm{g}}\right)^{2} \rightarrow 6$ states:
2 singlets when the 2 electrons in the same e_{g} orbital, and 1 singlet and 1 triplet when they are in different e_{g} orbitals

6 state functions are contained in the direct product of $\mathrm{e}_{\mathrm{g}} \otimes \mathrm{e}_{\mathrm{g}}$
$\mathrm{e}_{\mathrm{g}} \otimes \mathrm{e}_{\mathrm{g}} \quad$ reduces in O to $\mathrm{a}_{1} \oplus \mathrm{a}_{2} \oplus \mathrm{e}$

Don't know which are singlets and triplets.
Bethes's method is to lower the symmetry until all representations in the direct product are one-dimensional

Examine the Correlation Tables

In $D_{4 h}$ symmetry: $A_{1 g} \rightarrow A_{1 g} ; A_{2 g} \rightarrow B_{1 g} ; E_{g} \rightarrow A_{1 g}+B_{1 g}$
$\therefore \quad \mathrm{e}_{1 \mathrm{~g}} \rightarrow \mathrm{a}_{1 \mathrm{~g}}+\mathrm{b}_{1 \mathrm{~g}}$ orbitals; that is, they split.

$$
\begin{aligned}
\therefore \mathrm{e}_{\mathrm{g}}^{2} & \rightarrow \mathrm{a}_{1 \mathrm{~g}}^{2} \rightarrow{ }^{1} \mathrm{~A}_{\mathrm{lg}} \\
& \rightarrow \mathrm{a}_{1 \mathrm{lg}}^{1} \mathrm{~b}_{\mathrm{lg}}^{1} \rightarrow{ }^{1} \mathrm{~B}_{\mathrm{lg}},{ }^{3} \mathrm{~B}_{\mathrm{lg}} \\
& \rightarrow \mathrm{~b}_{1 \mathrm{~g}}^{2} \rightarrow{ }^{1} \mathrm{~A}_{\mathrm{lg}}
\end{aligned}
$$

Since the electrostatic field does not affect spin means that the ${ }^{3} B_{1 g}$ state in $D_{4 h}$ must have come from ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}}$ state in O_{h}.
All other states must be singlets.
$\Rightarrow \quad$ in $\mathrm{O}_{\mathrm{h}} \mathrm{d}^{2} \rightarrow{ }^{1} \mathrm{~A}_{1 \mathrm{~g}},{ }^{3} \mathrm{~A}_{2 \mathrm{~g}},{ }^{1} \mathrm{E}_{\mathrm{g}}$
Total degeneracy $=6$ as expected $(=(2 S+1) x$ state degeneracy $=1 \times 1+3 \times 1+1 \times 2)$
Next: do $\mathrm{t}_{2 \mathrm{~g}}{ }^{2}$ configuration in O_{h}
Reduce in $\mathrm{C}_{2 \mathrm{~h}}$

$$
\begin{aligned}
& \mathrm{t}_{2 \mathrm{~g}} \otimes \mathrm{t}_{2 \mathrm{~g}}=\mathrm{a}_{1 \mathrm{~g}} \oplus \mathrm{e}_{\mathrm{g}} \oplus \mathrm{t}_{\mathrm{lg}} \oplus \mathrm{t}_{2 \mathrm{~g}} \\
& \begin{array}{llll}
a_{g} & a_{g} & a_{g} & a_{g}
\end{array} \\
& \oplus \quad \oplus \quad \oplus \\
& b_{g} \quad b_{g} \quad a_{g} \\
& \oplus \oplus \\
& b_{g} \quad b_{g} \\
& \therefore \mathrm{t}_{2 \mathrm{~g}} \otimes \mathrm{t}_{2 \mathrm{~g}}\left(\mathrm{O}_{\mathrm{h}}\right) \rightarrow\left(\mathrm{a}_{\mathrm{g}} \oplus \mathrm{a}_{\mathrm{g}} \oplus \mathrm{~b}_{\mathrm{g}}\right) \otimes\left(\mathrm{a}_{\mathrm{g}} \oplus \mathrm{a}_{\mathrm{g}} \oplus \mathrm{~b}_{\mathrm{g}}\right)\left(\mathrm{C}_{2 \mathrm{~h}}\right)
\end{aligned}
$$

Put in 2 electrons:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{g}}^{2}(1) \rightarrow{ }^{1} \mathrm{~A}_{\mathrm{g}} \\
& \mathrm{a}_{\mathrm{g}}^{1}(1) \mathrm{a}_{\mathrm{g}}^{1}(2) \rightarrow{ }^{1} \mathrm{~A}_{\mathrm{g}}{ }^{3} \mathrm{~A}_{\mathrm{g}} \\
& \mathrm{a}_{\mathrm{g}}^{1}(1) \mathrm{b}_{\mathrm{g}}^{1} \rightarrow{ }^{1} \mathrm{~B}_{\mathrm{g}},{ }^{3} \mathrm{~B}_{\mathrm{g}} \\
& \mathrm{a}_{\mathrm{g}}^{1}(2) \mathrm{b}_{\mathrm{g}}^{1} \rightarrow{ }^{1} \mathrm{~B}_{\mathrm{g}},{ }^{3} \mathrm{~B}_{\mathrm{g}} \\
& \mathrm{a}_{\mathrm{g}}^{2}(2) \rightarrow{ }^{1} \mathrm{~A}_{\mathrm{g}} \\
& \mathrm{~b}_{\mathrm{g}}^{2} \rightarrow{ }^{1} \mathrm{~A}_{\mathrm{g}}
\end{aligned}
$$

We are looking for triplet state(s) in $\mathrm{C}_{2 \mathrm{~h}}$ that transform as ${ }^{3} \mathrm{~A}_{\mathrm{g}} \oplus^{3} \mathrm{~B}_{\mathrm{g}} \oplus^{3} \mathrm{~B}_{\mathrm{g}}$

In O_{h} this must be the $\mathrm{T}_{1 \mathrm{~g}}$ state
Therefore, states are: ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \oplus^{1} \mathrm{E}_{\mathrm{g}} \oplus^{3} \mathrm{~T}_{1 \mathrm{~g}} \oplus^{1} \mathrm{~T}_{2 \mathrm{~g}}$ in O_{h}
Total degeneracy $=1 \mathrm{x} 1+1 \mathrm{x} 2+3 \times 3+1 \mathrm{x} 3=15$

Lastly: $\mathrm{t}_{2 \mathrm{~g}}{ }^{1} \mathrm{e}_{\mathrm{g}}{ }^{1}$.

Method of descending symmetry is not necessary since both singlets and triplets are allowed $\left(\mathrm{t}_{2 \mathrm{~g}}, \mathrm{e}_{\mathrm{g}}\right.$ are different orbitals)

$$
\mathrm{t}_{2 \mathrm{~g}} \otimes \mathrm{e}_{\mathrm{g}} \rightarrow \mathrm{t}_{1 \mathrm{~g}} \oplus \mathrm{t}_{2 \mathrm{~g}} \text { in } \mathrm{O}_{\mathrm{h}}
$$

Therefore, states are: ${ }^{1} T_{1 g},{ }^{3} T_{1 g},{ }^{1} T_{2 g},{ }^{3} T_{2 g}$

Total degeneracy $=1 \times 3+3 \times 3+1 \times 3+3 \times 3=24$

Application of the method of descending symmetry to the conriguration d^{2} in
O_{h} symmetry.

Point Group	Configuration	Direct Product Representation	Irreducible Representations	Allowed States	Degeneracy
, O_{6}	eg^{2}	$\mathrm{E}_{8} \otimes \mathrm{E}_{8}$	$\mathrm{A}_{\mathbf{1 g}} \oplus \mathrm{A}_{2 \mathrm{~g}} \oplus \oplus \quad \mathrm{E}_{\mathrm{g}}$		6
$\mathrm{D}_{\text {4h }}$	$\begin{aligned} & a_{1 g}{ }^{2} \\ & a_{1 g} b_{1 g} \\ & b_{1 g}{ }^{2} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{1 \mathrm{~g}} \otimes \mathrm{~A}_{1 \mathrm{~g}} \\ & \mathrm{~A}_{1 \mathrm{~g}} \otimes \mathrm{~B}_{1 \mathrm{~g}} \\ & \mathrm{~B}_{1 \mathrm{~g}} \otimes \mathrm{~B}_{1 \mathrm{~g}} \end{aligned}$	$\begin{array}{lll} \mathrm{A}_{1 g} & \mathrm{~B}_{1 g} & \mathrm{~A}_{1 g} \oplus \mathrm{~B}_{1 \mathrm{~g}} \\ \mathrm{~A}_{1 g} & & \\ \mathrm{~B}_{1 g} & & \\ \mathrm{~A}_{1 g} & & \end{array}$	$\begin{aligned} & { }^{1} \mathrm{~A}_{1 \mathrm{~g}} \\ & { }^{1} \mathrm{~B}_{1 \mathrm{~g}}{ }^{3} \mathrm{~B}_{1 \mathrm{~g}} \\ & { }^{1} \mathrm{~A}_{1 \mathrm{~g}} \end{aligned}$	
O_{5}				${ }^{1} \mathrm{~A}_{18}{ }^{3} \mathrm{~A}_{2 \mathrm{~g}}{ }^{1} \mathrm{E}_{3}$	6
O	$\mathrm{t}_{28}{ }^{2}$	$\mathrm{T}_{28} \otimes \mathrm{~T}_{28}$	$\mathrm{A}_{1 \mathrm{~g}} \oplus \mathrm{E}_{\mathrm{g}} \oplus \mathrm{T}_{1 \mathrm{~g}} \oplus \mathrm{~T}_{2 \mathrm{~g}}$		15
$\mathrm{C}_{2 \mathrm{~h}}$	$a_{8}{ }^{2}$ $\mathrm{a}_{8} \mathrm{a}_{8}{ }^{\prime}$ $\mathrm{a}_{\mathrm{g}}{ }^{\prime 2}$ $\mathrm{a}_{3} \mathrm{~b}_{\mathrm{g}}$ $\mathrm{a}_{8}{ }^{\prime} \mathrm{b}_{8}$ $\mathrm{b}_{8}{ }^{2}$	$\mathrm{A}_{8} \otimes \mathrm{~A}_{8}$ $\mathrm{A}_{8} \otimes \mathrm{~A}_{8}$ $\mathrm{A}_{8} \otimes \mathrm{~A}_{8}$ $\mathrm{A}_{8} \otimes \mathrm{~B}_{3}$ $A_{B} \otimes B_{g}$ $\mathrm{B}_{8} \otimes \mathrm{~B}_{\mathrm{g}}$	$\begin{aligned} & \mathrm{A}_{8} \mathrm{~A}_{8} \oplus \mathrm{~B}_{\mathrm{g}} \mathrm{~A}_{8} \oplus \mathrm{~B}_{8} \oplus \mathrm{~B}_{8} \\ & \mathrm{~A}_{8} \\ & \mathrm{~A}_{8} \oplus \mathrm{~A}_{8} \oplus \mathrm{~B}_{8} \\ & \mathrm{~A}_{8} \\ & \mathrm{~B}_{8} \\ & \mathrm{~B}_{8} \\ & \mathrm{~A}_{8} \end{aligned}$	$\begin{aligned} & \\ & { }^{1} \mathrm{~A}_{8} \\ & { }^{1} \mathrm{~A}_{8},{ }^{3} \mathrm{~A}_{8} \\ & { }^{1} \mathrm{~A}_{8} \\ & { }^{1} \mathrm{~B}_{8}{ }^{3} \mathrm{~B}_{8} \\ & { }^{1} \mathrm{~B}_{8}{ }^{3} \mathrm{~B}_{8} \\ & { }^{1} \mathrm{~A}_{8} \end{aligned}$	
O_{h}				${ }^{1} \mathrm{~A}_{18}{ }^{1} \mathrm{E}_{8}{ }^{3} \mathrm{~T}_{18}{ }^{1} \mathrm{~T}_{28}$	15
O_{h}	$\mathrm{t}_{28} \mathrm{e}_{8}$	$\mathrm{T}_{28} \otimes \mathrm{E}_{8}$	$\mathrm{T}_{18} \oplus \mathrm{~T}_{2 \mathrm{~g}}$	${ }^{1} \mathrm{~T}_{18}{ }^{3} \mathrm{~T}_{18}{ }^{1} \mathrm{~T}_{28}{ }^{3} \mathrm{~T}_{28}$	2824

Correlation Diagrams

Connects strong field states to intermediate field states

Rules:

1.) Non-crossing rule: states of same symmetry and spin multiplicity may not cross.
2.) Hund's rules: a) states of highest spin multiplicity lie lowest in energy
b) terms with the same S, the one with highest orbital L lies lowest.

Rule's apply strictly only to ground states.

Next: consider an nd^{8} configuration

Need to observe 2 new principles.
1.) doubly occupied orbitals contribute $A_{1 g}$ to direct products and 0 to S and M_{S} due to the Pauli Exclusion Principle.
2.) Account for spin-pairing energy. Electrons in degenerate levels tend to have unpaired spins whenever possible.

It is an empirical fact that spin-pairing in e_{g} orbitals requires more energy than in the $t_{2 g}$ orbitals

$$
\therefore \mathrm{d}^{8}:
$$

$$
\mathrm{E}\left(\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{2}\right)<\mathrm{E}\left(\mathrm{t}_{2 \mathrm{~g}}^{5} \mathrm{e}_{\mathrm{g}}^{3}\right)<\mathrm{E}\left(\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{4}\right)
$$

$\because \# \mathrm{e}_{\mathrm{g}}$ pairs are: $0 \quad 1 \quad 2$

$$
t_{2 g}^{5} e_{g}^{3}
$$

$$
\Longrightarrow \uparrow
$$

$t_{2 g}^{6} e_{g}^{2}$

[^0]
$$
e g t_{2 g}
$$

how it appears
$$
\Rightarrow \mathrm{E}\left(\mathrm{e}_{\mathrm{g}}^{2}\right)<\mathrm{E}\left(\mathrm{e}_{\mathrm{g}} \mathrm{t}_{2 \mathrm{~g}}\right)<\mathrm{E}\left(\mathrm{t}_{2 \mathrm{~g}}^{2}\right)
$$

Therefore d^{8} behaves as if, relative to d^{2}, ordering of the $\mathrm{t}_{2 \mathrm{~g}}$ and e_{g} levels have been inverted.
Means, the correlation diagram for d^{8} is like that for d^{2} but with the ordering of the high-field states inverted.

Can show: $d^{10-n}\left(O_{h}\right)$ like $d^{n}\left(T_{d}\right)$ and $d^{n}\left(O_{h}\right)$ like $d^{10-n}\left(T_{d}\right)$

[^0]: actual electron
 configurations

