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Spin PostulateSpin Postulate

An electron possesses an intrinsic angular momentum in addition to its normal orbital 
angular momentum L ≡

 

S

Electrons exhibit a magnetic moment μr where
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mass of the electron and ≡

 

Bohr magneton
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S is an angular momentum like L with components Sx

 

, Sy

 

and Sz

 

and associated 
self-adjoint operators:

2ˆ,ˆ,ˆ,ˆ SSSS zyx which obey similar commutation relationships as 2ˆ,ˆ,ˆ,ˆ LLLL zyx

2Ŝzyx SSS ˆ,ˆ,ˆ all commute with but not with each other

Only one component, say
zŜ can have a common set of eigenfunctions with 2Ŝ

Note:Note:
2ˆ,ˆ,ˆ,ˆ SSSS zyx ≠

 

f(x, y, z) which means they commute with
2ˆ,ˆ,ˆ,ˆ LLLL zyx

Total angular momentum of electrons ≡ SLJ
rrr

+= where
2ˆ,ˆ JJi obey similar

commutation relationships as 2ˆ,ˆ LLi
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For any angular momentum A
r

Can define raising and lowering operators −+ Â,Â as

yx

yx

ÂiÂÂ

ÂiÂÂ
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+=
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Let the eigenfunctions of 
z

2 ÂandÂ be aa m,j

with eigenvalues ( ) hh a
2

aa mand1jj + respectively.

Can show that: ( ) ( ) 1m,j1mm1jjm,jÂ aaaaaaaa ±±−+=± h

am ranges from –ja

 

to +ja

 

in integer steps.
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Since 
2
1s =r for electrons ( ) hhhh

2
1mmand

4
31sss ss

222 ±===+=

The two spin eigenvectors are: up)(spinα
2
1,

2
1ms, s ≡=

and down)(spin
2
1,-

2
1ms, s β≡=

1
2
1,

2
1

2
1,

2
1

=±± and 0
2
1,

2
1

2
1,

2
1

=± m

Spin functions are orthonormal: normalized and orthogonal.
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Spherical Symmetry for many electron atoms (N)Spherical Symmetry for many electron atoms (N)

SLeeo ĤĤĤĤ rr
⋅

++=Hamiltonian is given by:

oĤ ≡

 

kinetic energy of electrons and the e-

 

-

 

nucleus interactions

If oHH ˆˆ = alone ( ) ( ) ( ) ( )Nψ2ψ1ψN,1,2,ψ LL =⇒

with each one e-

 

state characterized by 4 quantum numbers, n, ℓ, mℓ

 

, ms

eeĤ ≡

 

electron –

 

electron

 

interaction which couples angular momenta of the individual 
electrons in 2 possible ways 
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Low Low ““ZZ”” elements (Z ~< 40)elements (Z ~< 40)

∑∑ ==
i

i
i

i sSL
rr

l
rr

Spin-orbit interactions couples SLJformtoSandL
rrrrv

+=

≡≡

 

RussellRussell--Saunders couplingSaunders coupling

High High ““ZZ”” elements (Z > 40)elements (Z > 40)
Orbital and spin angular momenta of each electron couples first:

iii sj r
l
rr
+= ≡

 

total angular momenta of each individual electron.

These then couple to total ∑=
i

ijJ
rr

≡≡

 

jj--jj couplingcoupling

Note:Note: can have intermediate coupling 
for intermediate Z although L-S 
(Russell-Saunders) scheme is often 
used as a first approximation.
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Note:Note: For low Z S.Lee ĤĤ rr>

For high Z 22
SLee Zα~SLĤĤ

vr
Qrr ⋅<

⋅

α2

 

≡

 

fine-structure constant =7.29735 x 10-3

 

~1/137

Coupled energy states in Russell-Saunders coupling are called multipletsmultiplets and 
these are described by spectral terms of the form 2S+1L

L

L

GFDPS

43210L
↓↓↓↓↓

=

spin multiplicityspin multiplicity ≡

 

2S+1
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How to get L or S?How to get L or S?

Given any angular momenta 21 AandA
rr

212121 AA1,AA,AAA −−++= L
r

A,1,AA,ma ++−−= L

If there are > 2 angular momenta, couple A1

 

and A2

 

→ A12

 

, then A12

 

+ A → A123

 

, etc.

The effect of spin-orbit interactions is to split the multiplets

 

into their 
components with term symbols: 2S+1LJ
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Spin-orbit splitting: ( ) ( ) ( )[ ]1SS1LL1JJS)ξ(L,
2
1ΔE SL +−+−+=

⋅
rr

where ( )SL,ξ ≡

 

spin-orbit coupling constant > 0 for < ½-filed shells

→ smallest J lies lowest in energy

If ξ

 

< 0 for > ½-filled shells → largest J lies lowest in energy

≡≡

 

HundHund’’s third rules third rule

Example:Example: (ns)1(np)1

 

configuration ℓ1

 

= 0; ℓ2

 

= 1 ⇒ L = 1

s1

 

= ½; s2

 

= ½ ⇒ S = 1, 0

⇒ terms are 3P, 1P

When S = 0, L = 1, J = 1 ⇒ 1P1

When S = 1, L = 1, J = 2,1,0 ⇒ 3P2,1,0
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⇒

-2ξ

-ξ

ξ

3P0

3P1

3P2

-Hee

 

has 2 parts: a Coulomb repulsion J and an exchange interaction ±K which is 
non-classical and is a consequence of the Pauli-Exclusion Principle which requires the total 
wave function to be antisymmetric with respect to the interchange of two spin ½

 

particles 
(electrons which are fermions).
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⇒

HL.S
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Intermediate Crystal Fields  (low Z elements)Intermediate Crystal Fields  (low Z elements)
Let HCF ≡

 

term in the Hamiltonian which describes the electrostatic interaction with the 
surrounding ions or ligands.

if ⇒> eeCF ĤĤ strong crystal field

if ⇒>>
⋅SLCFee ĤĤĤ rr intermediate crystal field

if ⇒<
⋅SLCF ĤĤ rr weak crystal field

-Consider an atomic term with angular momentum L.  A representation, DL

 

, for any group 
of proper rotations can be found using angular momentum eigenfunctions: 
spherical harmonics {YL

M} as a 2L+1 degenerate basis set. 

Note: here DL

 

instead of ΓL

 

is used for historical reasons.
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Can show: ( ) ( ) { }( )φθ,RYφθ,YαR̂ 1M
L

M
L

−=

( ) ( )φθ,Yeαφθ,Y M
L

iMαM
L

−=−=

This means each member is transformed into itself multiplied by a numerical coefficient e-iMα
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L

DL

Can calculate the character system for any group of rotations for any L, and if reducible, 
can do this in the usual way into a direct sum of IRs

Note:Note: for χ(E)
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Table shows χ(DL

 

) for α

 

= π/2, 2π/3, and π

 

and the splitting of the free ion states in 
Oh

 

symmetry for L ≥

 

2

Splittings in lower symmetries deduced from correlation tables, or 
by finding direct sums using common classes in both groups.

ParityParity

If inversion, i, is a group operation then the wave function ψ

 

will have definite parity.

Parity ≡

 

eigenvalue

 

of the inversion operator.

ψλψψ ±==î

If ⇒+= ψψî even or gerade ≡

 

g-parity

If ⇒−= ψψî odd or ungerade ≡

 

u-parity
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The parity of ( ) ( )ll 1φθ,Ym −=

1111parity
3210
fdps

−+−+=
=⇒ l

For several electrons:

( ) ( )∑−=−=∏ i
ii 11parity

i

ll

( ) ( ) ( ) ( )NN ψψψψ LK 21,,3,2,1 =

This means the parity is determined by the electron configuration, NOTNOT on the 
total orbital angular momentum, L.
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Example:Example: nsnp ( ) statesuaretermsall11parity 10 −⇒−=−=⇒ +

nd2 ( ) statesgaretermsall11parity 22 −⇒+=−=⇒ +

npn’p ( ) statesgaretermsall11parity 11 −⇒+=−=⇒ +

Now, if Gi∈ and the parity is even [ ] [ ])()( IRDiIRD LL
++ =⇒ χχ

If the parity is odd [ ] [ ])()( IRDiIRD LL
−− −=⇒ χχ

Character table will have the form given by the following example for Oh

iCOOh ⊗=

{ } { }
( ) ( )
( ) ( )OOu

OOg
OiOOh

χχ
χχ
−

⇒

Therefore, need only consider {O} 
and work out parities later.
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Example:Example:
a)

 

Into what states does the Russell-Saunders term d2:3F split in Oh

 

symmetry?
b)

 

What is the effect of a D3

 

trigonal

 

distortion?

a)

 

3F → L = 3, S = 1.  Since S is unaffected by electrostatic fields 
(only by magnetic fields), triplet terms in the free ion remain triplets in Oh

 

symmetry

Parity = (-1)2+2

 

= +1 → g terms.

From table given for DL

 

L = 3: states are 3A2g

 

, 3T1g

 

, 3T2g

b)

 

Select classes that are common to both groups and reduce the IR from the 
group of higher symmetry in the group of lower symmetry
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From character tables:

actual character table

103T
103T
111A

6C8CEO

2

1

2

'
23

−
−

012E
111A

111A
3C2CED

2

1

'
233

−
−

Find from reduction:

EAT
EAT

AA
DO

12

21

22

3

⊕
⊕

This is the way correlation tables are derived. Procedure can be

 

used if such tables are 
not available.
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Strong Crystal FieldsStrong Crystal Fields

-one where electrostatic interactions due to ion surrounding > electron-electron interactions 
in ion.

⇒ Consider the effect on free ion electron configurations free ion electron configurations and deduce states and their 
degeneracies

Later: will correlate “strong”

 

to “intermediate CFs.

In Oh

 

symmetry 5d orbitals → t2g

 

(dxy

 

, dyz

 

, dxz

 

) + eg

 

(dz2

 

, dx2-y2

 

) and E(t2g

 

) < E(eg

 

) 
since these orbitals “point”

 

at the ligands.

Opposite scenario occurs in Td

 

symmetry where E(eg

 

) < E(t2g

 

)
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To determine states in a strong field, use BetheBethe’’s method of Descending Symmetrys method of Descending Symmetry

Method based on:
(i)

 

Electrostatic fields don’t affect spin

ji ΓΓ ⊗
(ii) If ψ(1,2) = ψi(1)ψj(2) and ψi(1) forms a basis for Γi

 

and ψj(2) forms a basis for Γj

 

means
ψi(1)ψj(2) forms a basis for the direct product 

Due to Pauli Exclusion Principle:
(1)

 

2 electrons in the same orbital generates a singlet state only.
(2)

 

2 electrons in different orbitals generates a singlet and a triplet state.
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Example:Example:
Find all states that forma d2

 

configuration in a strong field of Oh

 

symmetry.  Correlate 
with those of the free ion and those of an ion in an intermediate field.

Configurations are (t2g

 

)2, (t2g

 

)1(eg

 

)1

 

and (eg

 

)2

Parity of d2

 

terms ≡

 

g.  
Simply use O character table to reduce direct products

O character table:

11103T
11103T

00212E
11111A

11111A
6C6C3C8CEO

2

1

2

1

'
2423

−−
−−

−
−−
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Consider (eg

 

)2

 

→ 6 states: 
2 singlets when the 2 electrons in the same eg

 

orbital, and 1 singlet and 1 triplet 
when they are in different eg

 

orbitals

6 state functions are contained in the direct product of gg ee ⊗

gg ee ⊗ reduces in O to eaa 21 ⊕⊕

Don’t know which are singlets and triplets.

Bethes’s

 

method is to lower the symmetry until all representations in the direct productin the direct product
are one-dimensional

Examine the Correlation Tables

In D4h

 

symmetry:  A1g

 

→ A1g

 

;  A2g

 

→ B1g

 

;  Eg

 

→ A1g

 

+ B1g

∴ e1g → a1g

 

+ b1g

 

orbitals; that is, they split.
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1g
12

1g

1g
3

1g
11

1g
1
1g

1g
12

1g
2
g

Ab

B,Bba

Aae

→→

→→

→→∴

Since the electrostatic field does not affect spin means that the 3B1g

 

state in D4h

 

must have 
come from 3A2g

 

state in Oh

 

.  
All other states must be singlets.

⇒ in Oh

 

d2

 

→ 1A1g

 

, 3A2g

 

, 1Eg

Total degeneracy = 6 as expected ( = (2S+1)x state degeneracy = 1x1 + 3x1 +1x2)

Next:Next: do t2g
2

 

configuration in Oh

Reduce in C2h
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2g1gg1g2g2g tteatt ⊕⊕⊕=⊗

ga

g

g

b

a

⊕

g

g

g

b

b

a

⊕

⊕

g

g

g

b

a

a

⊕

⊕

( ) ( ) ( ) ( )2hggggggh2g2g CbaabaaOtt ⊕⊕⊗⊕⊕→⊗∴
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Put in 2 electrons:

g
12

g

g
12

g

g
3

g
11

g
1
g

g
3

g
11

g
1
g

g
3

g
11

g
1
g

g
12

g

Ab

A(2)a

B,B(2)ba

B,B(1)ba

A,A(2)(1)aa

A(1)a

→

→

→

→

→

→

We are looking for triplet state(s) in C2h

 

that transform as g
3

g
3

g
3 BBA ⊕⊕

In Oh

 

this mustmust be the T1g

 

state

Therefore, states are: h2g
1

1g
3

g
1

1g
1 OinTTEA ⊕⊕⊕

Total degeneracy = 1x1  + 1x2  + 3x3 + 1x3 = 15
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Lastly: Lastly: t2g
1eg

1.

Method of descending symmetry is not necessary since both singlets 
and triplets are allowed (t2g

 

, eg

 

are different orbitals)

h2g1gg2g Ointtet ⊕→⊗

Therefore, states are: gggg TTTT 2
3

2
1

1
3

1
1 ,,,

Total degeneracy = 1x3 + 3x3 + 1x3 + 3x3 = 24
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Correlation DiagramsCorrelation Diagrams

Connects strong field states to intermediate field states

Rules:Rules:

1.)  Non-crossing rule: states of same symmetry and spin multiplicity may

 

not cross.

2.)  Hund’s rules: a) states of highest spin multiplicity lie lowest in energy
b) terms with the same S, the one with highest orbital L lies lowest.

Rule’s apply strictly only to ground states.
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Next:Next: consider an nd8

 

configuration

Need to observe 2 new principles.

1.)  doubly occupied orbitals contribute A1g

 

to direct products and 0 to S and MS

 

due to the 
Pauli Exclusion Principle.

2.)  Account for spin-pairing energy.  Electrons in degenerate levels tend to have unpaired 
spins whenever possible.

It is an empirical fact that spin-pairing in eg

 

orbitals requires moremore

 

energy than in the t2g
orbitals

( ) ( ) ( )
210:arepairse#

etEetEetE:d

g

4
g

4
2g

3
g

5
2g

2
g

6
2g

8

Q

<<∴
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( ) ( ) ( )2
2g2gg

2
g tEteEeE <<⇒

Therefore d8

 

behaves as if, relative to d2, ordering of the t2g

 

and eg

 

levels have been inverted.

Means, the correlation diagram for d8

 

is like that for d2

 

but with the ordering of the 
high-field states inverted.

Can show: d10-n

 

(Oh

 

) like dn

 

(Td

 

) and dn

 

(Oh

 

) like d10-n

 

(Td

 

)
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