Basis Functions

C734b

The group of the Hamiltonian or Schrodinger equation is the set of function operators $\{\mathbf{A}, \mathbf{B}, \ldots, \mathbf{T}, \ldots\}$ isomorphous with the symmetry group $\{\mathrm{A}, \mathrm{B}, \ldots, \mathrm{T},$.

Eigenfunctions of the Hamiltonian form a basis for the group of the Hamiltonian.
Therefore, what is a basis?
If we have a set of operators that form a group, then a basis is a set of objects, each one of which, when operated on by one of the operators, is converted into a linear combination of the set of the objects.

Objects \equiv vectors, functions or quantum mechanical operators

Matrix representations form an irreducible or reducible group representation.

Let $\left\{\Phi_{\mathrm{s}}\right\} \equiv$ set of n-degenerate eigenfunctions of \mathbf{H} corresponding to a particular eigenvalue E

$$
\begin{gathered}
\Rightarrow \hat{H} \phi_{s}=E \phi_{s} \quad \mathrm{~s}=1, \ldots, \mathrm{n} \\
\because[\hat{T}, \hat{H}]=0 \Rightarrow \hat{H} \hat{T} \phi_{s}=\hat{T} \hat{H} \phi_{s}=\hat{T} E \phi_{s}=E \hat{T} \phi_{s}
\end{gathered}
$$

$\Rightarrow \hat{T} \phi_{S}$ is an eigenfunction of \mathbf{H} with the same eigenvalue E $\hat{T} \phi_{s} \equiv$ linear combination of $\left\{\varphi_{s}\right\} ;$ that is, $\hat{T} \phi_{s}=\sum_{i=1}^{n} \phi_{i} \Gamma(T)_{i s}, \mathrm{~s}=1, \ldots, \mathrm{n}$
In matrix form: $\hat{T}\left\langle\phi_{1}, \ldots, \phi_{s}, \ldots\right|=\left\langle\phi_{1}{ }^{\prime}, \ldots, \phi_{s}{ }^{\prime}, \ldots\right|=\left\langle\phi_{1}, \ldots, \phi_{s}, \ldots\right| \Gamma(T)$
or $\quad \hat{T}\langle\phi|=\left\langle\phi^{\prime}\right|=\langle\phi| \Gamma(T) \quad$ 1.)

Thus, $\left\{\varphi_{\mathrm{s}}\right\}$ can be regarded as a set of basis functions in an n -dimensional vector space called function space.
\therefore can interchange "eigenfunction" and "eigenvector".

Eq. 1.) implies that every set $\left\{\varphi_{s}\right\}$ that corresponds to eigenvalue E forms a basis for one of the IRs of the symmetry group $\mathrm{G}=\{\mathrm{T}\}$.
$\Rightarrow \quad$ every energy level may be labeled according to its IR in G.

Question: How to construct basis function sets which form bases for particular IRs?
Answer: Use projection operators (later).

Next: consider the transformation of an operator \hat{Q}
Effect of \mathbf{T} (no proof) is to transform an operator \hat{Q} into $\hat{Q}^{\prime}=\hat{T} \hat{Q} \hat{T}^{-1}$

* Operators can also form bases for the IRs of the group of the Hamiltonian.

Important question: can group theory tell us under which conditions a matrix element $=0$?
Answer \equiv yes!

Neglecting spin-orbit coupling, a quantum mechanical state function \equiv spinor \equiv product of a spatial part (orbital) and a spin function (for electron)

$$
\Rightarrow \Psi\left(r, m_{s}\right)=\psi(r) \chi\left(m_{s}\right)
$$

$\hat{Q}_{S}^{j} \quad$ acts on space (not spin)

$$
\begin{equation*}
\Rightarrow\left\langle\Psi_{u}^{k}\right| \hat{Q}_{s}^{j}\left|\Psi_{q}^{i}\right\rangle=\left\langle\psi_{u}^{k}\right| \hat{Q}_{s}^{j}\left|\psi_{q}^{i}\right\rangle\left\langle\chi_{u} \mid \chi_{q}\right\rangle \tag{1.}
\end{equation*}
$$

Since χ functions are orthogonal $\Rightarrow\left\langle\chi_{u} \mid \chi_{q}\right\rangle=0$
unless χ_{u} and χ_{q} have the same spin quantum number
Therefore, Eq. (1.) means $\Delta \mathrm{S}=0 \equiv$ spin selection rule.

Note: with spin-orbit coupling, this rule is not rigid but certainly transitions between states where $\Delta \mathrm{S} \neq 0$ will be weaker.

Now consider what happens to $<\mathrm{Q}>$ under a symmetry operator T .
It's value is unchanged.
$\therefore\langle Q\rangle=\left\langle\Psi_{u}^{k}\right| \hat{Q}_{s}^{j}\left|\Psi_{q}^{i}\right\rangle=\left\langle\hat{T} \Psi_{u}^{k}\right| \hat{T} \hat{Q}_{s}^{j} \hat{T}^{-1}\left|\hat{T} \Psi_{q}^{i}\right\rangle$

Left-hand side of Eq. (2.) is invariant and therefore belongs to the totally symmetric representation Γ^{1} : A_{1} or equivalent.
$\hat{Q}_{s}^{j}\left|\Psi_{q}^{i}\right\rangle$ is a function that transforms according to the direct product $\Gamma^{j} \otimes \Gamma^{i}$
The integrand in Eq. (2.) is the product of two functions: $\Psi_{u}^{k^{*}}$ and $\hat{Q}_{s}^{j}\left|\Psi_{q}^{i}\right\rangle$

It transforms as the direct product: $\Gamma^{k^{*}} \otimes \Gamma^{j} \otimes \Gamma^{i}$

Question: What is the condition that $\Gamma^{a^{*}} \otimes \Gamma^{b} \quad$ contains Γ^{1} ?
Condition is:

$$
a_{1}=\frac{1}{h} \sum_{T} \chi_{\text {IR }}(T) \chi_{\text {reducible }}^{\chi^{*} b}(T)=\frac{1}{h} \sum_{T} \chi^{a}(T) \chi^{b}(T) \neq 0
$$

This will be true if $\mathrm{a}=\mathrm{b}$ (orthogonality theorem for characters)
$\Rightarrow \quad$ Eq. (2.) $=0$ unless $\Gamma^{j} \otimes \Gamma^{i}$ contains $\Gamma^{k} \quad$ (by orthogonality)
or $\quad \Gamma^{i} \otimes \Gamma^{j} \otimes \Gamma^{k} \subset \Gamma^{1}$

Conclusion: a matrix element is zero unless the direct product of any two of the representations contains the third one.

Example of Matrix Elements: Transition Probabilities

Probability of a transition being induced by interaction with electromagnetic radiation is proportional to a matrix element of the form:

$$
\left\langle\psi^{k}\right| \hat{Q}^{j}\left|\psi^{i}\right\rangle
$$

$\mathbf{Q} \equiv$ electric dipole operator, -er, for strongest (E1) electric dipole transitions.
Components of -er transform like x, y, and z .
or $\mathbf{Q} \equiv$ magnetic dipole (M1) operator with components that transform as R_{x}, R_{y}, or R_{z}. (weaker than E1)
or $\mathbf{Q} \equiv$ electric quadrupole (E2) operator with components that transforms as binary products of x, y, and z . (weaker than E1; comparable to M1).

