Applications: $\boldsymbol{\pi}$-electron systems

C734b

Visualization is important.
In group theory this can be done using projection operators

Definition of a projection operator: \hat{P}^{j} (no proof)

$$
\hat{P}^{j}=\left(\frac{\ell_{j}}{h}\right) \sum_{T} \chi_{j}(T)^{*} \hat{T}
$$

A projection operator projects out from a function (of your choice), φ, the sum of all basis functions that transform according to the IR Γ^{j}

If Γ^{j} is $1 D, \varphi$ is a starting basis function for Γ^{j}
If Γ^{j} is $>1 \mathrm{D}$, repeat the procedure l_{j} times, each time with a new φ, to obtain 1_{j} linearly independent functions

Best understood by doing an example:

π-electron systems

Electronic charge density in a MO extends over the whole molecule, and therefore, MO must form bases for the symmetry point group of the molecule

Symmetry-adapted MOs will be expressed as linear combinations of atomic orbitals (LCAO)

$$
\psi^{j}=\sum_{r} c_{r j} \phi_{r} \text { or }\left|\psi^{j}\right\rangle=\sum_{r} c_{r j}\left|\phi_{r}\right\rangle
$$

$\left\{\varphi_{\mathrm{r}}\right\} \equiv$ orthonormal basis set of atomic orbitals

Example: MOs of benzene using as basis $62 p_{z}$ orbitals, one on each C

Recall, a 2p orbital looks like:

Therefore, use contour of $\varphi=2 p_{z}$ on carbon r to determine $\varphi_{r}{ }^{\prime}$ under each operation in the point group of the molecule $=\mathrm{D}_{6 \mathrm{~h}}$, and recognize that $\varphi_{\mathrm{r}}{ }^{\prime}$ contributes to the trace, χ, of the matrix representation under an operation T only when it transforms into $\pm \varphi_{r}$

$$
\begin{aligned}
& \begin{array}{ccccccccccccc}
D_{6 h} & E & 2 C_{6} & 2 C_{3} & C_{2} & 3 C_{2}^{\prime} & 3 C_{2}^{\prime \prime} & i & 2 S_{3} & 2 S_{6} & \sigma_{h} & 3 \sigma_{d} & 3 \sigma_{v} \\
\hline \chi\left(\Gamma_{\phi}\right) & 6 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & -6 & 0 & 2
\end{array} \\
& \text { Using } \quad a_{j}=h^{-1} \sum_{k} c_{k} \chi_{j}\left(T_{k}\right) \chi\left(T_{k}\right) \\
& \text { can show } \\
& \Gamma_{\phi}=A_{2 u} \oplus B_{2 g} \oplus E_{1 g} \oplus E_{2 u}
\end{aligned}
$$

Example: $a\left(A_{2 u}\right)=\frac{1}{24}[(1)(1)(6)+(3)(-1)(-2)+(1)(-1)(-6)+(3)(1)(2)]=1$

Note: for $\Gamma_{\varphi} 6$ AOs yield 6 MOs : on with $\mathrm{A}_{2 \mathrm{u}}$ symmetry, one with $\mathrm{B}_{2 \mathrm{~g}}$ symmetry, two degenerate orbitals with $\mathrm{E}_{1 \mathrm{u}}$ symmetry and 2 degenerate orbitals with $\mathrm{E}_{2 \mathrm{u}}$ symmetry.

In a cyclic $(\mathrm{CH})_{n}$ molecule with rotational C_{n} symmetry, one will form $n \pi$ MOs, one belonging to each IR of the point group C_{n}. The IRs for C_{6} are A, B, $\mathrm{E}_{1}, \mathrm{E}_{2}$. However for benzene need to use $D_{6 h}$ because there are other symmetries at play.

Basis functions for the IRs of benzene can be obtained using projection operators:

$$
\psi^{j}=N_{j} \sum_{T} \chi_{j}(T)^{*} \hat{T} \phi
$$

N_{j} is a normalization constant and φ is an arbitrary function defined in the subspace of the functions for which in this example are the $62 p_{z}$ orbitals.

For simplicity use $\varphi_{1} \equiv 2 p_{z}$ orbital on carbon 1 .

$$
\begin{aligned}
& \psi\left(A_{2 u}\right)=N\left(A_{2 u}\right)\left[1 \phi_{1}+1\left(\phi_{2}+\phi_{6}\right)+1\left(\phi_{3}+\phi_{5}\right)+1 \phi_{4}\right. \\
& \begin{array}{llll}
E & 2 C_{6} & 2 C_{3} & C_{2}
\end{array} \\
& -1\left(-\phi_{1}-\phi_{3}-\phi_{5}\right)-1\left(-\phi_{2}-\phi_{4}-\phi_{6}\right)-1\left(-\phi_{4}\right)-1\left(-\phi_{3}-\phi_{5}\right) \\
& 3 C_{2}^{\prime} \quad 3 C_{2}^{\prime \prime} \quad i \quad 2 S_{3} \\
& \left.-1\left(-\phi_{2}-\phi_{6}\right)-1\left(-\phi_{1}\right)+1\left(\phi_{2}+\phi_{4}+\phi_{6}\right)+1\left(\phi_{1}+\phi_{3}+\phi_{5}\right)\right] \\
& \begin{array}{llll}
2 S_{6} & \sigma_{h} & 3 \sigma_{d} & 3 \sigma_{v}
\end{array} \\
& \therefore \psi\left(A_{2 u}\right)=4 N\left(A_{2 u}\right)\left[\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}\right] \\
& =N\left(A_{2 u}\right)^{\prime}\left[\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}\right]
\end{aligned}
$$

Normalization

$$
\begin{gathered}
\because \psi^{j}=N_{j} \sum_{r} c_{j r} \phi_{r} \\
\Rightarrow\left\langle\psi^{j} \mid \psi^{j}\right\rangle=\left|N_{j}\right|^{2}\left\langle\sum_{r} c_{r j} \phi_{r} \mid \sum_{s} c_{s j} \phi_{s}\right\rangle \\
=\left|N_{j}\right|^{2}\left[\sum_{r}\left|c_{r j}\right|^{2}+\sum_{r \neq s} \sum_{s} c_{r j}^{*} c_{s j} S_{r s}\right]=1
\end{gathered}
$$

$\mathrm{S}_{\mathrm{rs}} \equiv$ overlap integral

Useful approximation = zero overlap approximation (ZOA): $\mathrm{S}_{\mathrm{rs}}=0$ for $\mathrm{r} \neq \mathrm{s}$ Typically, $\mathrm{S}_{\mathrm{rs}} \sim 0.2-0.3$ for $\mathrm{C}\left(2 \mathrm{p}_{z}\right)$, but ZOA yields N_{j} easily, and the ratio of the coefficients still exact.

$$
\begin{aligned}
& \Rightarrow a_{2 u}=\frac{1}{\sqrt{6}}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}\right) \\
& \text { Label for MO of } \mathrm{A}_{2 u} \text { symmetry }
\end{aligned}
$$

Pictorially, indicate the relative magnitude of the coefficients on the structure of benzene

No nodal plane

Can show using projection operators:

$\mathrm{e}_{1 \mathrm{~g}}(2)$:

1 nodal plane
$\mathrm{e}_{2 \mathrm{u}}(1)$:

2 nodal planes
$\mathrm{b}_{2 \mathrm{~g}}$:

3 nodal planes
$>$ Energy of an orbital, $>$ \# nodes
Therefore expect $\mathrm{E}\left(\mathrm{a}_{2 \mathrm{u}}\right)<\mathrm{E}\left(\mathrm{e}_{1 \mathrm{~g}}\right)<\mathrm{E}\left(\mathrm{e}_{2 \mathrm{u}}\right)<\mathrm{E}\left(\mathrm{b}_{2 \mathrm{~g}}\right)$

Note:
For a 2 -fold degeneracy use P^{j} first for φ_{1} and then again for φ_{2}. Then find linear combinations of the two wave functions which are orthogonal and normalized. In the case of benzene, do this for $\mathrm{E}_{1 \mathrm{~g}}$ set, and then again for the $\mathrm{E}_{2 \mathrm{u}}$ set.

Note:
Since wave functions ψ can be multiplied by an arbitrary phase factor without changing the charge density it is common practice if need be to multiply ψ by -1 so that the LCAO does not start with a negative sign.

Energy of MOs

$$
\begin{aligned}
E^{j} & =\left\langle\psi^{j}\right| \hat{H}\left|\psi^{j}\right\rangle=\left|N_{j}\right|^{2}\left\langle\sum_{r} c_{r j} \phi_{r}\right| \hat{H}\left|\sum_{s} c_{s j} \phi_{s}\right\rangle \\
& =\left|N_{j}\right|^{2}\left[\sum_{r}\left|c_{r j}\right|^{2} H_{r r}+\sum_{r \neq s} \sum_{s} c_{r j}^{*} c_{s j} H_{r s}\right]
\end{aligned}
$$

where

$$
H_{r s}=\underbrace{*}_{\text {Hermitian }} H_{s r}^{*}=\left\langle\phi_{r}\right| \hat{H}\left|\phi_{s}\right\rangle
$$

Hückel Approximation

If $\mathrm{s}=\mathrm{r}$	$\mathrm{H}_{\mathrm{rr}}=\alpha$	"very" negative
If s is joined to r : $\mathrm{s} \leftrightarrow \mathrm{r}$	$\mathrm{H}_{\mathrm{rs}}=\beta$	negative
If s is not joined to r	$\mathrm{H}_{\mathrm{rs}}=0$	
	$\therefore E^{j}=\left\|N_{j}\right\|^{2}\left[\sum_{r}\left\|C_{r j}\right\|^{2}+\sum_{r \neq s} \sum_{s} C_{r j}^{*} C_{s j} \beta\right]$	

There is double counting here
Example: $\quad a_{2 u}=\frac{1}{\sqrt{6}}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}\right)$
$\therefore E\left(a_{2 u}\right)=\frac{1}{6}\left[6 \alpha+2\left(c_{1} c_{2}+c_{2} c_{3}+c_{3} c_{4}+c_{4} c_{5}+c_{5} c_{6}+c_{6} c_{1}\right) \beta\right]$

$$
=\frac{1}{6}[6 \alpha+12 \beta]=\alpha+2 \beta
$$

Find for benzene:

Agrees with "nodal prediction".

