Applications: Equivalent Bond Orbitals

C734b

Derive the MOs for the nitrate ion $\mathrm{NO}_{3}{ }^{-}$with $\mathrm{D}_{3 \mathrm{~h}}$ symmetry

Let $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ denote the set of O 2 p atomic orbitals pointing towards the central N -atom.

Determine characters from those orbitals σ_{i} which transform into $+\sigma_{i}$

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}^{\prime}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
Γ_{σ}	3	0	1	3	0	1

Reduction yields : $\Gamma_{\sigma}=A_{1}^{\prime} \oplus E^{\prime}$

Next check the character table:
s-orbital on \mathbf{N} transforms as $\mathrm{A}_{1}{ }^{\text {, }}$
and p_{x}, p_{y} orbitals transform as E^{\prime}
These are the orbitals involved in bonding.

$$
\begin{aligned}
& \text { Using: } \psi^{j}=N_{j} \sum_{T} \chi_{j}(T)^{*} \hat{T} \sigma_{1} \\
& \psi\left(A_{1}^{\prime}\right)=N\left(A_{1}^{\prime}\right) \sigma_{1}+\left(\sigma_{1}+\sigma_{3}\right)+\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right) \\
& \left.+\sigma_{1}+\left(\sigma_{2}+\sigma_{3}\right)+\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)\right] \\
& =a_{1}^{\prime}=\frac{1}{\sqrt{3}}\left[\sigma_{1}+\sigma_{2}+\sigma_{3}\right] \quad \text { in the zero-overlap approximation }
\end{aligned}
$$

$\mathrm{MO} \psi_{1}$ for $\mathrm{NO}_{3}{ }^{-}$is obtained by forming a linear combination of $\mathrm{a}_{1}{ }^{\prime}$ with AO on N of the same symmetry $\equiv \mathrm{s}$
i.e. $\psi_{1}=s+b_{1} a_{1}^{\prime} \equiv$ basis for $\mathrm{A}_{1}{ }^{\prime}$

Note: group theory tells us which central atom orbital (s in this case) and linear combination of ligand orbitals $\left(a_{1}{ }^{\prime}\right)$ are involved but not the magnitude of the b_{1} coefficient. That requires a Q.M. calculation.

Note: b_{1} positive \rightarrow bonding

$$
\mathrm{b}_{1} \text { negative } \rightarrow \text { antibonding }
$$

Next: look at E' ligand orbitals. Using projection operators and σ_{1} :

$$
\psi_{1}\left(E^{\prime}\right)=N_{1}\left(E^{\prime}\right)\left[\begin{array}{r}
\left.2 \sigma_{1}-\left(\sigma_{2}+\sigma_{3}\right)+\underset{\mathrm{E}}{2}-2 \sigma_{1}-\left(\sigma_{2}+\sigma_{3}\right)\right] \\
\sigma_{\mathrm{h}}
\end{array}\right.
$$

$$
\therefore \psi_{1}\left(E^{\prime}\right)=\frac{1}{\sqrt{6}}\left[2 \sigma_{1}-\left(\sigma_{2}+\sigma_{3}\right)\right]
$$

Similarly starting with σ_{2} and σ_{3} yields:

$$
\begin{aligned}
& \psi_{2}\left(E^{\prime}\right)=\frac{1}{\sqrt{6}}\left[2 \sigma_{2}-\left(\sigma_{3}+\sigma_{1}\right)\right] \\
& \psi_{3}\left(E^{\prime}\right)=\frac{1}{\sqrt{6}}\left[2 \sigma_{3}-\left(\sigma_{1}+\sigma_{2}\right)\right]
\end{aligned}
$$

Clearly 3 basis functions are too many for a two-fold degeneracy as ψ_{1}, ψ_{2} and ψ_{3} are not linearly independent.

Need 2 linear combinations which overlap p_{x} and p_{y}

The first choice is easy.
Use ψ_{1} as it has lots of overlap with p_{x}
Why? $\quad \psi_{1}\left(E^{\prime}\right)=\frac{1}{\sqrt{6}}\left[2 \sigma_{1}-\left(\sigma_{2}+\sigma_{3}\right)\right]$

$$
\therefore \psi_{2}=p_{x}+b_{2} e_{1}^{\prime}
$$

To get the second ligand orbital take $\psi_{2}\left(E^{\prime}\right)-\psi_{3}\left(E^{\prime}\right)$ and therefore eliminate σ_{1} from the combination.

This puts more overlap on p_{y}

$$
\psi_{2}\left(E^{\prime}\right)-\psi_{3}\left(E^{\prime}\right) \propto\left(\sigma_{2}-\sigma_{3}\right)
$$

$$
\begin{aligned}
& \text { Normalize } \quad \Rightarrow e_{2}^{\prime}=\frac{1}{\sqrt{2}}\left(\sigma_{2}-\sigma_{3}\right) \\
& \therefore \psi_{3}=p_{y}+b_{3} e_{2}^{\prime}
\end{aligned}
$$

Note: the subscripts in $\mathrm{e}_{1}{ }^{\prime}$ and $\mathrm{e}_{2}{ }^{\prime}$ denote the partners in the two-fold basis.

Note: $\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$ are OK symmetry-wise but they don't look like "classical" chemical bonds

To achieve maximum overlap with ligand p-orbitals and therefore the most stability, the central atom orbitals undergo hybridization to make three equivalent sp^{2} hybrids.

To find 3 equivalent MOs \equiv bond orbitals express $\psi_{1}, \psi_{2}, \psi_{3}$ in matrix form.

$$
\left\langle\psi_{1}, \psi_{2}, \psi_{3}\right|=\left\langle s, p_{x}, p_{y}\right|+\left\langle a_{1}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right| \widetilde{B}
$$

where

$$
\widetilde{B}=\left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & b_{2} & 0 \\
0 & 0 & b_{3}
\end{array}\right)
$$

Examine the ligand LCAOs more closely: $\left\langle a_{1}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right|=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right| \tilde{M}$
where

$$
\begin{aligned}
& \tilde{M}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
& \uparrow \\
& i n
\end{aligned}
$$

Coefficients in:

$$
\begin{aligned}
\therefore\left\langle\psi_{1}, \psi_{2}, \psi_{3}\right| & =\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right| \tilde{M} \widetilde{B} \\
& =\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right| \widetilde{B} \widetilde{M} \because[\widetilde{B}, \widetilde{M}]=0 \\
& \text { since } \mathbf{B} \text { is diagonal } \\
\therefore\left\langle\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}\right|= & \left\langle\psi_{1}, \psi_{2}, \psi_{3}\right| \tilde{M}^{-1} \\
= & \left\langle s, p_{x}, p_{y}\right| \tilde{M}^{-1}+\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right| \widetilde{B} \\
= & \left\langle h_{1}, h_{2}, h_{3}\right|+\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right| \widetilde{B}
\end{aligned}
$$

hybrid orbitals on N

The sp^{2} hybrid N orbitals are:

$$
\begin{array}{r}
\left\langle h_{1}, h_{2}, h_{3}\right|=\left\langle s, p_{x}, p_{y}\right| \tilde{M}^{T} \because \tilde{M}^{-1}=\tilde{M}^{T} \\
\quad=\left\langle s, p_{x}, p_{y}\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)\right.
\end{array}
$$

Approach is general (eg can be used for T_{d} geometry) where the ligand geometry does not corresponds to that of the p and d orbitals

Procedure is not necessary for $\mathrm{AB}_{6}\left(\mathrm{O}_{\mathrm{h}}\right)$ or $\mathrm{AB}_{4}\left(\mathrm{D}_{4 \mathrm{~h}}\right)$ symmetry since the ligands point at orbitals on the central atom.

