

Using:
$$\psi^{j} = N_{j} \sum_{T} \chi_{j}(T)^{*} \hat{T} \sigma_{1}$$
$$\psi(A_{1}) = N(A_{1}) (\sigma_{1} + (\sigma_{1} + \sigma_{3}) + (\sigma_{1} + \sigma_{2} + \sigma_{3}))$$
$$E = 2C_{3} = 3C_{2}$$
$$+\sigma_{1} + (\sigma_{2} + \sigma_{3}) + (\sigma_{1} + \sigma_{2} + \sigma_{3})]$$
$$\sigma_{h} = 2S_{3} = 3\sigma_{v}$$
$$= a_{1}^{'} = \frac{1}{\sqrt{3}} [\sigma_{1} + \sigma_{2} + \sigma_{3}] \text{ in the zero-overlap approximation}$$

MO ψ_1 for NO₃⁻ is obtained by forming a linear combination of a_1 ' with AO on N of the **same symmetry** \equiv s

i.e.
$$\psi_1 = s + b_1 a_1 \equiv \text{basis for } A_1$$

Note: group theory tells us which central atom orbital (s in this case) and linear combination of ligand orbitals (a_1) are involved but not the magnitude of the b_1 coefficient. That requires a Q.M. calculation.

Note: b_1 positive \rightarrow bonding b_1 negative \rightarrow antibonding

Next: look at E' ligand orbitals. Using projection operators and σ_1 :

$$\psi_{1}(E') = N_{1}(E') [2\sigma_{1} - (\sigma_{2} + \sigma_{3}) + 2\sigma_{1} - (\sigma_{2} + \sigma_{3})]$$

E 2C₃ σ_{h} 2S₃

C734b equivalent bond orbitals

5

$$\therefore \psi_1(E') = \frac{1}{\sqrt{6}} \left[2\sigma_1 - (\sigma_2 + \sigma_3) \right]$$

Similarly starting with σ_2 and σ_3 yields:

$$\psi_2(E') = \frac{1}{\sqrt{6}} [2\sigma_2 - (\sigma_3 + \sigma_1)]$$

$$\psi_{3}(E') = \frac{1}{\sqrt{6}} [2\sigma_{3} - (\sigma_{1} + \sigma_{2})]$$

Clearly 3 basis functions are too many for a two-fold degeneracy as ψ_1,ψ_2 and ψ_3 are not linearly independent.

Need 2 linear combinations which overlap p_x and p_y

C734b equivalent bond orbitals

6

The first choice is easy. Use ψ_1 as it has lots of overlap with p_x

Why?
$$\psi_1(E') = \frac{1}{\sqrt{6}} \left[2\sigma_1 - (\sigma_2 + \sigma_3) \right]$$

$$\therefore \psi_2 = p_x + b_2 e_1$$

To get the second ligand orbital take $\psi_2(E') - \psi_3(E')$ and therefore eliminate σ_1 from the combination.

This puts more overlap on py

$$\psi_2(E') - \psi_3(E') \propto (\sigma_2 - \sigma_3)$$

C734b equivalent bond orbitals

7

Normalize
$$\Rightarrow e'_{2} = \frac{1}{\sqrt{2}}(\sigma_{2} - \sigma_{3})$$
$$\therefore \psi_{3} = p_{y} + b_{3}e'_{2}$$
Note: the subscripts in e₁' and e₂' denote the partners in the two-fold basis.
Note: { $\psi_{1}, \psi_{2}, \psi_{3}$ } are OK symmetry-wise but they don't look like "classical" chemical bonds

$$\therefore \langle \psi_{1}, \psi_{2}, \psi_{3} | = \langle \sigma_{1}, \sigma_{2}, \sigma_{3} | \widetilde{M}\widetilde{B} \\ = \langle \sigma_{1}, \sigma_{2}, \sigma_{3} | \widetilde{B}\widetilde{M} \because [\widetilde{B}, \widetilde{M}] = 0$$

since **B** is diagonal
$$\therefore \langle \psi_{1}, \psi_{2}, \psi_{3} | = \langle \psi_{1}, \psi_{2}, \psi_{3} | \widetilde{M}^{-1} \\ = \langle s, p_{x}, p_{y} | \widetilde{M}^{-1} + \langle \sigma_{1}, \sigma_{2}, \sigma_{3} | \widetilde{B} \\ = \langle h_{1}, h_{2}, h_{3} | + \langle \sigma_{1}, \sigma_{2}, \sigma_{3} | \widetilde{B} \\ \end{pmatrix}$$

hybrid orbitals on N
C734b equivalent bond orbitals 12

The sp² hybrid N orbitals are:

$$\left\langle h_{1}, h_{2}, h_{3} \right| = \left\langle s, p_{x}, p_{y} \right| \widetilde{M}^{T} \because \widetilde{M}^{-1} = \widetilde{M}^{T}$$

$$= \left\langle s, p_{x}, p_{y} \right| \left(\begin{array}{ccc} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right)$$

$$C734b \text{ equivalent bond orbitals}$$

$$13$$

