
CHAPTER ONE: Storage of Energy by Matter



DEFINITION OF CHEMICAL SYSTEMS AND ASSOCIATED TERMS


Chemical Systems
A chemical system is defined to contain a specific mass of matter, of known composition, and which is subjected to a specified temperature and pressure.  The consequence is that to properly characterize a chemical system, one must specify: (1) the temperature of the system; (2) the pressure acting on the system and; (3) the concentration (mass) of each element in the system.  The last condition (a defined composition) requires that the boundaries of the system be well defined. Without well-defined boundaries, the mass of the system (and of the elements in the system) cannot be accurately specified.

The material included within the boundary is referred to as the chemical system.  All material beyond the boundary of the system is referred to in thermodynamic parlance as the surroundings. There are, therefore, three aspects associated with the concept of a chemical system: the system (which must be well defined), the boundary of the system (which must be well defined), and the surroundings (which do not need to be defined for thermodynamic purposes).  These aspects become important when one considers heat and mass transfer to and from the system.

As example, a hand sample of a basalt may be defined as a chemical system, but to do so requires stipulation of the temperature and pressure of the sample, and the concentrations of the elements in the sample.  The boundary of this system is obvious and is that which you can see. The total mass of the sample can be determined by weighing it and its (elemental) composition can be determined by bulk chemical analysis of the hand sample.  The surroundings are the atmosphere and everything else beyond the boundary of the hand sample (i.e., the rest of the universe)

Phases (Solid, Liquid and Gaseous Phases)
A phase is defined as any mass of material with (1) well defined boundaries (so that its mass can be determined) and is (2) homogeneous in composition within those boundaries and (3) in a single state of matter (solid, liquid, gas, etc.).  As an example, the above-mentioned hand specimen of basalt may be composed of plagioclase, olivine or orthopyroxene phenocrysts and glass.  Each of these minerals and the glass is a phase provided (i) each is homogeneous and (ii) each has well defined boundaries. Alternatively stated, each phase must be a physically distinct entity and compositionally homogeneous constituent of a chemical system.  Homogeneous means homogeneous microscopically (a phase may contain many elements so that it is heterogeneous at the atomic scale).

Chemical Components of Solutions
Solid, liquid and gaseous solutions are composed of chemical constituents and these may be referred to as chemical components of the solution.  Components may be elemental or molecular entities although the latter are generally chosen as components for most solids (excluding metals and alloys).  Olivine contains two major components generally: the Mg2SiO4 and the Fe2SiO4 components.  These are molecular components of the olivine solid solution.  The choice of components is somewhat arbitrary and, in the end, they are chosen for their convenience in calculating the stability of the components and the phase (olivine) in natural systems.  The two major aspects contributing to the choice are: (1) the components must describe completely the composition of the solution and; (2) the thermodynamic properties of the components must be known.  The minimum number of components required to describe completely the composition of a solution is referred to as the set of thermodynamic components.

Orthopyroxenes (Mg,Fe)SiO3 are solid solutions, mostly of MgSiO3 and FeSiO3.  These two constituents are good choices for components because they are convenient to use for describing the composition of the solid solution.  An added convenience is that their thermodynamic properties are also known.

A chemical analysis of any solution is required to determine the number of components needed to describe its composition.  For example, chemical analyses of orthopyroxenes commonly reveal appreciable amounts of Ca, indicating that a third component (CaSiO3) is needed to describe the orthopyroxene solid solution.

Components of a solution may be real or hypothetical.  As example, the atmosphere is a gaseous solution containing molecular oxygen.  Thus, O2(gas) may be chosen as a chemical component.  It is also a real chemical species in the solution.  Atomic oxygen (O) may also be considered a chemical component of the atmosphere, although there is no atomic oxygen in the atmosphere and it generally is an inconvenient choice for most purposes.  Nevertheless, it is a legitimate (although hypothetical) component.

As another example, consider the composition of plagioclase. A chemical analysis may indicate the presence of numerous elements in the phase, including Na, Ca, Al Si and O. The chemical analysis may be presented as elemental percentages, as oxide percentages or as percentages of the molecular species NaAlSi3O8, CaAl2Si2O8 and KAlSi3O8.  These molecular components are commonly referred to as end‑member components of plagioclase because they represent compositional extremes observed in this solid solution.  These molecular components are also real components of the plagioclase solid solution, but hypothetical molecular components may also be defined.

Chemical Species
Chemical species are elements, ions, or molecules that actually exist in solutions (i.e., they are real entities constituting the solution).  Species may be used as components of solutions (e.g., O2 in gaseous solutions). These are always real components, not hypothetical ones. 


HEAT, WORK, ENERGY AND HEAT CAPACITY



ATOMIC AND MOLECULAR CONCEPTS 


INTRODUCTION
The stabilities of solids, liquids, and gases (the states of matter) are determined largely by the amount of energy stored within them.  If their stabilities are to be predicted, it is necessary to know how much energy they contain, and how energy is transferred from one system to another.  To these ends, it is useful to understand how energy is stored in matter (although not altogether necessary).  There are two usual means by which energy is transferred, as heat or as work done on (or by) the system.  Heat energy and its storage in matter will be discussed first, followed by a discussion of work.  There are other less common ways for energy to be transferred to or from a system, but these will not be discussed.

The capacity of a solid, liquid or gas (a system) to store energy is determined primarily by the motions available to ions, atoms and molecules in each of the three states of matter. Some simple generalizations about the motion of atoms and molecules in gases and solids can be made that provide insight into their capacity to store energy.  Although liquids and glasses store energy in the same ways, their treatment is more complicated.  As a result, the principles of energy storage focus on gases and solids.  Storage of energy in liquids and glasses is considered by analogy.

Units of Heat and Energy: The units of heat and energy are identical, demonstrating that they are equivalent.  Transfer of heat from one system to another is measured in Joules/mol or equivalent units.  Formerly, the common unit was cal/mol and many tables of thermodynamic properties are given in these units.  (One calorie equals 4.184 Joules.)

Atoms and Molecules in Gases
Atoms and molecules in the gaseous state are separated from one another by large volumes of space (at least compared with the size of the atom or molecule).  Consequently, gaseous molecules are not much attracted or repelled by each other (or more simply, they do not interact with each other, except for elastic collisions).  From an energetic perspective, gaseous species can be conceived of, and treated as, individual atoms or molecules acting independently of each other. This generalization suggests that one should look to the individual atoms and molecules of the gas to explain the capacity of gases to store energy.

The types of motion that gaseous species undergo are shown in Fig. 1‑1. The term "mode" is here used interchangeably with the term "motion".  Energy is stored in one of these "modes": translational modes (Fig. 1‑1A), rotational modes (Fig. 1‑1B), and vibrational modes (Fig. 1‑1C).

Storage of Energy by Gases
Translational Mode: The constituent atoms, ions or molecules of a gas are free to move in all directions (three dimensions). This free movement is referred to as a translational mode. Energy stored in a translational mode is stored as kinetic energy, and manifests itself in the velocity of the atoms or molecules.  Heat supplied to a monatomic gas (a gas made up of single atoms) will be stored only in translational modes because there are no other modes (motions) available to atoms -they don’t have bonds about which to rotate or vibrate..  The greater the amount of heat transferred to a gas, the greater the kinetic energy (hence average velocity) of the constituent atoms.

Rotational Mode:  Most gases are composed of molecules.  Molecules are composed of at least two atoms, and for them to remain together as a chemical species, bonds must exist between the constituent atoms.  Molecular oxygen is composed of two bonded oxygen atoms.  Such molecules are subject to rotation (Fig. 1‑1B) about the centre‑point of the bond connecting the atoms.  Rotation is motion and represents a second mode of energy storage.  The rate of "spin" increases as the amount of energy stored in the rotational mode increases.  In addition to translational mode, this is a second mode contributes to the capacity of gases to store energy (absorb heat). Note that monatomic gases cannot store energy in this mode ‑ there is no bond about which to rotate.

Vibrational Mode:  Another important mode of energy storage is storage of energy in the bonds of gaseous molecules.  Within a molecule, the bonded atoms may oscillate or vibrate (Fig. 1‑1C) without breaking the bond. Absorption of heat may increase the rate and amplitude of these oscillations.  In molecules with multiple bonds, there are a wide variety of possible vibrations.  These "vibrational" modes therefore represent a third means to store energy in gaseous molecules. 

The more energy stored in the vibrational modes, the more rapidly the atoms vibrate and the greater the amplitude of vibration.  Only so much energy can be stored in this mode before the bond is broken.  With breakage of the bond the gas dissociates to form two or more species.

Kinetic & Potential Energy
In Fig. 1‑1 (diagram C) a diatomic molecule is shown at its rest position, and in two different vibrational states, one where the bond is stretched to maximum and one where it is at maximum compression.  Consider the situation where the molecule is vibrating and is approaching maximum compression.  As the two atoms approach one another they slow down due to electrostatic repulsion as their electronic orbitals approach each other.  The atoms lose kinetic energy as they slow down and the kinetic energy is converted into potential energy and stored in the bond (much like it would be in a compressed spring).  At maximum compression, the two atoms are, for an instant, stationary with respect to each other. They then possess no kinetic energy and all energy of this vibrational mode is stored as potential energy in the bond (as in a compressed spring).  An analogous situation occurs at the point of maximum extension.  Considering the large number of molecules in a mole of gas (6x1023 molecules), it becomes apparent that, on average, about half of the energy stored in vibrational mode exists as kinetic and about half as potential energy.

Heat and Temperature

Temperature is a direct monitor of the kinetic energy of atoms or molecules in gases, liquids and solids; potential energy stored in a substance does not affect its temperature.  Any heat (energy) absorbed by a substance is distributed among all available modes.  Where vibrational modes are available to store energy, some will be stored as potential energy, and this will not be recorded as an increase in temperature, as it monitors only energy stored in kinetic form.  Only for monatomic gases will the amount of heat absorbed be converted entirely to kinetic energy (velocity) because only translational modes are available to store the energy (no energy can be stored as potential energy).  Because energy stored as potential energy has no effect on temperature of a body, there is no necessary relationship between the amount of heat (energy) absorbed or lost and the temperature of the body, except for monatomic gases.

To emphasize this aspect, consider an enclosed box containing one mole of argon (a monatomic gas) and a second box containing one mole of a diatomic gas (e.g., O2).  Both are initially at the same temperature.  Suppose the two boxes were heated so that each absorbed precisely the same amount of energy.  All the heat absorbed by the monatomic gas must be stored in translational modes (it has no other modes to store energy).  All absorbed energy therefore goes towards increasing the kinetic energy (velocity) of the atoms, hence towards increasing the temperature of the gas.

The heat absorbed by the diatomic gas, however, will be stored in translational, rotational and vibrational modes (Figs. 1‑1A, 1‑1B, C).  Because some energy stored in vibrational modes is converted to potential energy, the average velocity (kinetic energy) of the diatomic molecules will be lower than that of the atoms of the monatomic gas, even though the same amount of heat has been supplied to both gases.  Put most simply, some of the absorbed heat is stored as potential energy (e.g., in vibrational modes), thus, not all heat energy goes to increasing kinetic energy (hence raising the temperature) of the gas.  To summarize, heat is a form of energy and temperature is a measure only of the kinetic energy or velocity of atoms and molecules in a substance.

HEAT CAPACITY OF GASES

The capacity of a substance to absorb heat relative to its associated temperature rise is referred to as the heat capacity of the substance. Where normalized to one mole of substance it is referred to as the molar heat capacity.  If normalized to one gram of the substance it is referred to as the specific heat capacity.  The heat capacity of a substance is dependent upon the number and types of modes available for energy storage.  It is the fundamental thermodynamic property to which all others can be related.  Note that rotational and vibrational modes are dependent primarily on bonding so that bond properties (lengths and types of bonds) must affect greatly heat capacity.

Definition of Molar Heat Capacity

The molar heat capacity of a substance is the heat (energy) transferred (q) per degree change (per mole of the substance):


q/(T2 ‑ T1) =q/T
(1‑1)

where T1 and T2 are the temperatures of the substance before and after heat transfer.  As (T approaches an infinitely small value it can be expressed in derivative form:


T (dT
(1‑2)

The mathematical expression for the molar heat capacity (Cp) measured at constant pressure then becomes:


Cp = q/dT
(1‑3)

As shown later, this expression is required to calculate the stability of gases, liquids and solids at all temperatures, from the earth's surface to its core, and from the Sun's corona to its deepest interior. 

HEAT CAPACITY OF SOLIDS
Ions, Atoms and Molecules in Solids
Like gases, crystals are composed of ions, atoms and molecules, but there is a major difference between the two states of matter. Whereas the entities of a gas are independent of neighbouring ions, atoms or molecules, entities of a solid are bonded to their neighbours (Fig. 1‑2).  As a result, the interactions among neighbours (the chemical bonds) become all-important with regards to storage of energy.  In solids, movements are restricted by surrounding ions, atoms, or molecules.  In NaCl (table salt), a central cation (e.g., Na+ in Fig. 2‑1 A) is surrounded by six equidistant anions (e.g., Cl‑ in Fig. 2‑1 A).  The cation cannot undergo translation because it is bound to the six anions.  Neither can a Na‑Cl "molecule" of the solid undergo rotation without breaking bonds.  The central ion can only oscillate within its anionic "cage".  Only vibrational modes are available to store energy in crystals (and in solids generally).

Although the cation has been the focus of this discussion, the argument is equally applicable to anions of the crystal.  Each anion is bonded to six equidistant cations, so the argument extends to all anions.  In fact, the argument extends to all constituents (atoms, ions or molecules) of a crystalline phase. Comparison of Figs. 1‑2A and 1‑2B demonstrates, however, that vibrational modes of a crystal are not all identical, but depend upon the structure of the crystal.  The longer distance separating the anions above and below the central cation in Fig. 1‑2B (z direction), will result in vibrational frequencies that are different in the z direction than those in the x and y directions, where bond lengths are shorter.

Structural Sites & Vibrations

In NaCl (Fig. 1, cubic crystal) the central Na+ is surrounded by six Cl‑ ions.  This central ion moves to a limited extent in all directions within the "cage" of the surrounding ions.  Averaged over time, however, the position of the central ion coincides with the geometric centre of the anionic cage.  This centre is referred to as the Na+ structural site (although the ion may never have been positioned precisely at the structural site).  These movements take the form of vibrations, because each time the ion moves in one direction away from one or more anions, it necessarily moves toward one or more other anions.  Interactions with these ions force the central ion back towards its structural site.  These forces are sometimes referred to as restoring forces.  The result is that the central ion vibrates about its structural site, moving away from it and then back towards it.  Similar processes affect atoms, ions and molecules in liquids, although other types of energy also contribute to the ability of these to absorb heat.

Chemical Forces, Bonds and Springs

Although the forces acting on a central atom, ion, or molecule of a solid are chemical in nature, they can be modelled, at least approximately, by the analogy of balls attached to springs.  Throughout the following discussion, we will focus on a central atom surrounded by an anionic cage.  Consider atoms to be represented by ping pong balls.  A central Na ion of NaCl may be considered as a ball surrounded by six Cl balls, with a spring connecting the central Na ball to each of the six surrounding Cl balls.  If the springs were of equal strength, and the central Na+ ion was at rest, it would be precisely equidistant from each of the six Cl‑ ions. This position is the Na "structural site" and is also called its rest position.  If the central Na+ ion is displaced somewhat from its rest position, then let go, it will move back towards its rest position but will overshoot it.  This process continues and the central atom is said to "oscillate" about its rest position.  Such a system is called an harmonic oscillator, and the central atom responds much like it would if it was attached to its bonding partners by springs.

Harmonic Oscillators and Hooke's Law
The properties of springs were studied R. Hooke, who observed that the force exerted on a body (e.g. a ball) by a spring (attached to the ball and to a rigid wall or another stationary ball) was proportional to the distance that the ball was displaced from its rest position.  The mathematical equivalent of this statement is Hooke's Law, which is:


F  =  ‑khx
(1‑4)

where F  = force exerted on the body, x = displacement of the body from the rest position (position where F = 0) and kh = proportionality constant or, more commonly, the elastic force constant or the restoring force constant.  The equation may be used to describe the behaviour of atoms of gases, liquids and solids held together by bonds. The atoms are represented by the balls of the above analogy, and the bonds are represented by springs.  The vibrational motions of the atoms modelled by Hooke's Law may be of any type (ionic, covalent, Van der Waals, etc.) and atoms obeying this law are referred to as Harmonic Oscillators.

Hooke's Law is equally applicable to all states of matter, solids, liquids, or gases in which atoms are bonded together.  As example, atoms of molecules in a gas oscillate as shown in Fig. 2.  Hooke's Law is a useful model to describe the behaviour of all vibrating, bonded atoms (so long as the displacement from the rest position is not too great)

HEAT CAPACITY OF LIQUIDS
Liquids display properties akin to both gases and solids.  Liquids take the shape of their container, as do gases, but unlike gases (and like solids) liquids do not fill the container.  Bonds between ions, atoms or molecules of solids are sufficiently strong that solids maintain their shape; not so liquids or gases.

The storage of energy in liquids is similarly complicated. Atoms, ions, or molecules of liquids undergo translation, as do gaseous species, although not to the same extent.  Some energy is therefore stored by liquids in translational modes.  As previously mentioned, atoms and molecules of liquids are bonded, so vibrational modes must be present associated with these bonds.  Both modes contribute to the storage of energy and to the heat capacity of liquids.  The contribution of rotation to the heat capacity is uncertain. Certainly rotation in liquids is much more restricted than in gases, but the fluid nature of most liquids probably permits limited rotation of some atoms, ions, or molecules.

Cp AS A FUNCTION OF TEMPERATURE
Translational, rotational, and vibrational modes are affected by changes in temperature and pressure.  The capacity of a substance to absorb heat is therefore dependent upon the temperature (T) and pressure (P) to which it is subjected.  The change to the heat capacity of a substance resulting only from temperature change (pressure held constant) is referred to as the heat capacity at constant pressure (Cp).  The mathematical equivalent of this is:


Cp = (T)
(1‑5)

where  is some function which depends only on temperature (pressure held constant at 1 atm. or 101 kP by convention).  In 1932 Maier and Kelley noted that the following empirical function adequately describes Cp as a function of temperature, (for temperatures above 0C):


Cp = (T) = a + bT + c/T2
(1‑6)

where a, b and c are arbitrary constants.  These must be evaluated for each substance to reproduce its Cp over a range of temperatures. The function does not adequately describe Cp of substances much below 25°C.  Equation (1‑6) is referred to as the Maier‑Kelley Heat Capacity Power Function.  The equation is used to reproduce Cp values of liquids, solids, and gases over a wide range of temperatures (at one bar total pressure).  As will be seen, Eq. (1‑6) is convenient for calculating other thermodynamic properties of minerals, liquids and gases at high temperature because it can be easily integrated and differentiated with respect to temperature.

WORK AND ENERGY
Another Way to Transfer Energy
Besides energy being transferred to a system in the form of heat, energy can be transferred to a system by having work done on it.  Similarly, a system may lose energy by doing work on its surroundings.  Work is done on or by a system when the volume of the system changes.  Compression of a gas in a cylinder by a piston is an example where work energy is transferred to the gas (contained within the cylinder), with the energy being stored in translational, rotational and vibrational modes.  Note that the volume of the gas in the cylinder has changed.

To expand on the above example, consider a piston and cylinder containing a gas at atmospheric pressure. The piston is free to move. If the piston is forced to move half way down the cylinder (compressing the gas to half its original volume), then a considerable amount of energy would have been used (by you, me or a machine) to move the piston the require distance.  Since energy cannot be created or destroyed, one must ask where that energy resides after movement of the piston and compression of the gas.  It resides in the gas contained in the cylinder. This is apparent if we were to release the piston. It would rapidly move back towards its original position. The energy contained in the compressed gas has been transferred to the piston taking the form of kinetic energy (movement of the piston).

Energy was transferred to the gas by doing work on it (by compressing it).  A change in volume of the gas resulted and this is referred to as PV‑work.  There are other forms of work but these are generally are restricted to specialized environments.  Most importantly, as a result of our doing work, energy was transferred to the system and this was reflected in a change in the volume of the system.

Measurement of Work Done (w)
The work done (or stated alternatively, the energy transferred) during compression and expansion can be calculated from the following equation:


w = ‑PdV
(1‑7)

where w is the work done on (energy transferred to) the system.  For the above example, compression of the gas resulted in dV being negative so that w, the work done on the system was positive (system gained energy): the gas in the cylinder gained energy. Similarly, upon expansion, the volume of the system increased, w was negative and energy was lost from the gaseous system. 

Note that the work done must be reversible, otherwise the energy transferred by the system is greater than the amount of work done on the surroundings.  Loss of heat via friction, for example, may be important where energy is transferred very rapidly.  This is not a reversible process.  This aspect is the subject of a more comprehensive thermodynamics course and will not be considered further in this one.


CHAPTER TWO: The Amount of Energy Stored in Systems



INTERNAL ENERGY, ENTHALPY AND THE FIRST LAW


INTERNAL ENERGY (E)
Energy stored in translational, rotational and vibrational modes of a substance is referred to as its Internal Energy (E) and exists as both of kinetic and potential energy. The first chapter was primarily a discussion of the contributions to the internal energy of a system. The mass of a system determines the total internal energy of the system but the internal energy and other thermodynamic properties generally are quoted on a molar basis (per mole of a substance).

As emphasized in Chapter 1, there are two common ways by which the internal energy of a system can be changed: (1) by heat absorption (or loss); and (2) by work done by (or on) the system.  The mathematical equivalent of this statement is:


(E  =  q + w
(2‑1)

The change in internal energy ((E) is the sum of the heat absorbed (or lost) by the system (q) and the work done on (or by) the system (w). Energy gained and lost by systems can be measured by Eq. (2‑1) using calorimetry (heat exchange) and measuring volume changes of the system. This equation is referred to as the First Law of Thermodynamics.  It indicates that energy cannot be created or destroyed, only transferred into or out of a system.
FIRST LAW OF THERMODYNAMICS


Measurement of Internal Energy
Consider a system have a specific internal energy  E.  There are no means by which to measure or calculate this internal energy.  We can, however, measure changes to the internal energy of a system.  Thus, we must choose a standard set of conditions (temperature and pressure) and define the system that satisfies these conditions to be in its standard state.  We can then say that its internal energy in this state is E = E°.  Convenient conditions to choose for our standard are 25°C and 1 bar pressure.  We call these conditions Standard Temperature and Pressure or STP for short.  (This is the new accepted definition of STP.  In the past, STP referred to 0°C and 1 atmosphere pressure.)  When the internal energy of the system is changed through heat transfer or work, the new internal energy of the system (Enew) is then given by:


Enew = E° + (E = E° + q + w
(2‑2)

If the energy is transferred as heat, a calorimeter can be used to measure the heat exchange (heat transferred being represented by "q"). If work is done, the associated change in energy of the system can be measured by determining the volume change of the system and multiplying it by the pressure acting on the system to obtain the work done (see Eq. 1‑7). Once heat transfer or work is measured the change in internal energy ((E) is calculated from Eq. (1). To overcome the problem of evaluating E° we assign it an arbitrary value and then calculate Enew from Eq. (2‑2). Any new value of E therefore is referenced to the arbitrary value of E° (the Reference State).

The first law of thermodynamics implies conservation of energy; energy is neither created nor destroyed, but is either converted to another form of energy or is transferred into or out of the chemical system (i.e., from or to the surroundings). Other forms of the first law may be derived by substitutions for q and w. Since, for small changes in V or T:


w  =  ‑PdV
(1‑7)

and


Cp  =  q/dT
(1‑3)

also


(E = dE

Substituting these into Eq. (2‑1) yields:


dE  =  CpdT ‑ PdV
(2‑3)

Sign of dE, q and w
If only heat (q) is added to the system (no work done), the internal energy of the system increases and dE is positive. Because w = 0, and dE is positive if heat is added to a system, then q must be positive; that is when the surroundings supply heat (energy) to the system, the sign if q is positive. Conversely, when heat is lost from the system to the surroundings, q is negative. 

If no heat is exchanged when a system is compressed, the internal energy of a system is increased.  The change in volume of the system, dV, is negative during its compression so that dE is positive upon compression.  The special condition where no heat is transferred as a system either is compressed (or expanded) is called adiabatic compression (or expansion). The term adiabatic means that no energy is transferred across the boundary of the system (q = 0).

ENTHALPY (H)
The enthalpy of the system is the internal energy of the system plus an energy term related to the volume of the system. All systems have potential energy associated with their volume, as shown by the following example. Consider a brick sitting on a tabletop. Consider also two coins, one sitting on the tabletop, and one perched on top of the brick. The coin on top of the brick has additional energy relative to the coin on the tabletop by virtue of its position (potential energy).  This can be proved by rapidly removing the brick. The coin will drop to the tabletop.  The potential energy was transformed to kinetic energy as the coin moved to the tabletop.  Just as did the coin on top of the brick, the molecules at the top of the brick have potential energy that molecules at the base of the brick do not.  This potential energy exists simply because the brick has volume; thus, this is referred to as volume potential energy. The volume potential energy of one mole of the material of the brick is calculated as the product of the pressure acting on the system multiplied by the volume of the system:

     Volume Potential Energy = PV
(2‑4)

where P is the pressure acting on the system and V is the volume of the system. 

Combination of the volume potential energy (PV) of a system with its internal energy (E) yields a new thermodynamic property called ENTHALPY (H).  The enthalpy of a system (H) is defined as the sum of the internal energy and the volume potential energy of the system, and is calculated according to:

     H = E + PV
(2‑5)

where H is the enthalpy, E is the internal energy, P is the pressure acting on the system and V is the volume of the system. The appropriate units of P and V must be used to allow the volume potential energy to be expressed in Joules per mole.

Enthalpy, Internal Energy & Cp
There is a close relationship between enthalpy, internal energy and heat capacity, as now shown.  Taking the derivative of Eq. (2‑5):


dH = dE + PdV + VdP
(2‑6)

and substituting Eq. (2‑3) into (2‑6) gives:


dH = CpdT ‑ PdV + PdV + VdP
(2‑7)

If energy is transferred at at constant pressure then dP = 0 so that:


dH = CpdT  =  (q/dT)dT
(2‑8)

and


dH = q
(2‑9)

From this last equation it is apparent that the heat transferred to a system at constant pressure is equal to the change in enthalpy of the system. Thus Eq. (2‑9) demonstrates the close relationship between heat transferred and change in enthalpy.  Enthalpy is also referred to as the heat content (of the system).  All energy of solids is stored in bonds (in vibrational modes); consequently, the enthalpy of a system reflects primarily bond energy (the other contribution being the volume potential energy, which is a very small contribution).

Enthalpy as a Function of Temperature
Equation (2‑9) provides a means to calculate the change of enthalpy of a substance as temperature changes (at constant pressure).  If the heat capacity of the substance is independent of temperature (at least over the temperature interval of interest), then Cp can be treated as a constant and Eq. (2‑9) integrated to give:


H(T2) ‑ H(T1)  =  Cp(T2 ‑ T1)
(2‑10)

or

     H(T2)  =  H(T1) + Cp(T2 ‑ T1)
(2‑10a)

where H(T2) is the enthalpy at temperature T2 (the final temperature) and H(T1) is the enthalpy at T1 (the initial temperature).

The heat capacity of substances generally changes with changes in temperature so that the Maier‑Kelley heat capacity power function must be substituted for Cp in Eq. (2‑8). This gives:

dH = (a + bT + c/T2)dT
(2‑11)

and upon integration with respect to T between the limits T2 and T1:

H(T2) ‑ H(T1) =


a(T2‑T1)+(b/2)(T22‑T12) ‑ c(1/T2‑1/T1)



(2‑12)

Enthalpy and its Reference State
Because the internal energy (E) of a system cannot be measured in an absolute sense, neither can enthalpy (see Eq. 2‑5). Only changes to these thermodynamic properties can be measured (using calorimetry for heat transfer and volume of system for work energy transfer). To get around this problem, we can define a reference point (still with an unknown value of H) and measure only the changes in enthalpy relative to this reference point.  Then enthalpies at any other P or T condition can be measured as a change in enthalpy relative to the reference point ((H).  Of course, at the reference conditions, (H = 0.

The most convenient reference condition, and the one almost universally adopted, is one mole of an element in its most stable state at 25°C and 1 bar total pressure (STP).  An element that is found in this condition is said to be in its standard state.  In other words, therefore, an element in its standard state at 25°C and 1 bar pressure is assigned a value of (H = 0.0 J/mol.  This is the datum or REFERENCE STATE for the enthalpy of all elements.

Carbon, for example, may exist in two solid forms at STP: graphite and diamond. Graphite is the more stable form at STP so that the enthalpy change between graphite and "carbon in its standard state" is set to 0.0 J/mol (i.e., they are the same thing and there is no enthalpy difference or any other difference between the two).  Graphite is the most stable state of carbon at STP and is thus assigned as the carbon reference state.

The stable form of oxygen at STP is O2(gas); consequently the reference state for oxygen is O2(gas) and the enthalpy change between O2(g) and "oxygen in its standard state" is assigned a value of 0.0 J/mol at STP.

As another example, mercury is liquid at STP so that the reference state for mercury is the liquid state at STP and (H for Hg(l) at STP is 0.0 J/mol.  Regardless of the state of the element, the stable form of the element at STP is taken as the reference state and the difference in enthalpy between the element in its most stable state at STP and the element in its standard state is 0.0 J/mol (because they are the same).

The Enthalpy of Reaction
The difference in enthalpy between one mole of graphite and one mole of diamond at STP is 1895 J/mol.  This direct comparison is formalized using a convention whereby a reaction is first written and the enthalpy change that takes place during the reaction, normally called the Enthalpy of Reaction (Hr), is calculated by subtracting the enthalpy of the reactant from the enthalpy of the product. For the graphite‑diamond reaction:


Cgraphite    Cdiamond



Hr  = Hdiamond ‑ Hgraphite




  = 1895 J/mol.

As another example, consider the reaction of H2(gas) and O2(gas) to form H2O(gas).  The reaction may be written:


H2(g) + 1/2O2(g)    H2O(g)


Hr  = H(H2O) ‑ H(H2) ‑ 1/2H(O2)


Note the role of stoichiometric coefficients in the calculation.  The enthalpy of each species involved in the reaction is multiplied by the stoichiometric coefficient of the balanced reaction.


The equation for calculating the enthalpy of reaction (also referred to as the Heat of Reaction) can be generalized to:


Hr  = PnPH(products) ‑ RmRH(reactants)


where P is the sum over all product species and nPH(products) is the stoichiometric coefficient (nP) of the product species multiplied by the enthalpy of one mole of that species. R is the sum over all reactant species and nRH(reactants) is the stoichiometric coefficient (nR) of the reactant species multiplied by the enthalpy of one mole of the reactant species. 

Standard State Enthalpy of Formation
A special reaction is the one where, at STP, elements in their standard states react to form another substance (e.g., a compound or another form of the element).  When one mole of the product is formed, the enthalpy of this reaction is referred to as the Standard Enthalpy of Formation of the product, and is denoted by the symbol, H°f.  The H°f values for all elements and numerous compounds have been tabulated and are provided in handouts or can be found in reference books.

The enthalpy of formation allows convenient calculation of enthalpies (or heats) of reaction among all compounds (and elements) by applying the above equation for the enthalpy of reaction, where H°f is substituted for H, so that

Hr =PnPH°f(products) ‑ RmRH°f(reactants)

As proof, consider the reaction of H2O(gas) reacting to H2O(liquid):



H2O(g)  H2O(l)

HrH°f(H2Oliquid) ‑ H°f(H2Ogas).

This reaction can be considered to be the sum of two reactions:


H2(g) + 1/2O2(g)    H2O(l)



HrH°f(H2Oliquid)

and


H2O(g)    H2(g) + 1/2O2(g)



Hr ‑ H°f(H2Ogas).

where the subscripted g and l indicate respectively gas and liquid. Their sum results in cancellation of the enthalpies of the elements and summation of the enthalpies of formation of the H2O liquid and gas yields the desired enthalpy (heat) of reaction for conversion of one mole of H2O(gas) to one mole of H2O(liquid) at STP.


CHAPTER 3: Order, Structure, Entropy and the 2nd Law 



Energetic Effects of Order and Structure in Phases


Introduction
The basic concept of entropy is best explained via statistical mechanics. The statistical basis of entropy will not be discussed here, but its important properties, and its relation to structure and order in matter, will be discussed.

There are two generalizations about entropy which are here stated but not proved. The first is that the greater the degree of disorder displayed by a system, the greater will be its entropy.  The second generalization is that when a system undergoes a change in energy, some energy will be irretrievably lost to the surroundings, i.e., some energy loss occurs that cannot be fully recovered by the system in any cyclical process.  As example, energy lost or gained in changing a system from an ordered stated to a less ordered state cannot be entirely recovered by reordering the system to its original state.  More energy must be used to reorder the system than was gained by disordering it.  This is why there can be no perpetual motion machines.  More simply put, all changes (processes) proceed with a loss of energy (which cannot be recovered).  These are various ways of stating the Second Law of Thermodynamics.

Entropy and States of Matter
The entropy of (metastable) ice at STP is 44.7 J per mol per degree.  The entropy of water (liquid H2O) at STP is 69.9 e.u. (where e.u indicates Entropy Units or Joules per mol per degree). The entropy of gaseous H2O is 188.7 e.u.

There is a very close relationship between the structure of each of the phases and its entropy.  The structure of ice is highly regular.  Given the location of one H2O molecule in ice, and knowing the structure of ice, the location of other H2O molecules can be predicted with high accuracy over hundreds and thousands of molecules.  This is due the high degree of order in ice.

If there were a relationship between entropy and order, then one would expect the entropy of water to differ from that of ice, primarily because ice has both short- and long-range order, whereas water has only short-range order.  In fact, the coordination number of a H2O molecule in ice and water is about the same (four), and the distance separating a H2O molecule from each of its 4 nearest neighbours is about the same in both phases; the short range order is therefore similar in both.  In the liquid, however, one cannot predict accurately the location of the H2O molecules of the second coordination sphere (the group of second-nearest neighbour molecules) because there is no periodicity to the liquid; the long-range order is absent so no accurate predictions can be made.  Liquid water is more disordered than ice because the former lacks long-range order and its entropy is correspondingly greater than that of ice.

For H2O gas, even with the position of one H2O molecule known, it is impossible to predict the location of the next nearest neighbours because there is not even short-range order in a gas.  The gas is completely disordered and the entropy of the gas is consequently the highest of the three phases. From this analysis of the entropies of ice, water and H2O(gas) at STP it seems that, as the degree of disorder increases, so the entropy increases.  This is a general rule; gases always have higher entropies than their equivalent condensed phases.

Entropy, Structure and Order
Albite (NaAlSi3O8) is one of the most common minerals of the Earth's crust and is an essential component of Al‑silicate glasses (and many ceramics).  It is found in two structural forms, low albite, high albite (or analbite) and it is also observed at STP as a glass (no long range order). The structure of low albite consists of one unique site on which Na resides, one unique tetrahedral site on which Al resides, and three unique tetrahedral sites on which Si atoms reside.  Oxygen atoms reside on separate "anionic" structural sites.  Its entropy is 207.4 e.u.  High albite is formed only at high temperatures.  Its structure differs slightly from that of low albite in that there are 4 structurally equivalent tetrahedral sites.  The implication of this is that Al is not restricted to a specific tetrahedral site (as in low albite), but may reside on any of the four tetrahedral sites.  The site on which it resides cannot be predicted from structural studies.  The entropy of high albite is 226.4 e.u.  In albite glass, there are no unique sites for the cations in that their location cannot be predicted.  Its entropy is 251.9 e.u.

Given the location of a Na, an Al and an Si atom in low albite, the locations of other Na, Al and Si atoms can be accurately predicted from structural information because of the high degree of order (both short- and long-range).  In high albite, the locations of Na atoms can be predicted with an accuracy equal to that for low albite, but the locations (sites) on which Al atoms reside cannot, however, be predicted with accuracy because an Al atom may reside on any one of 4 tetrahedral sites.  This is markedly different from low albite, and it demonstrates that the degree of order is lower for high albite than for low albite.  Similarly, there is less certainty concerning the tetrahedral sites on which Si atoms reside.  In contrast to low albite, where the three sites on which Si atoms reside are known, Si atoms in high albite may reside on any three of the four tetrahedral sites.  Clearly the degree of order is less (and the degree of disorder greater) in high albite than in low albite.  This is reflected in their entropy values, with high albite having a greater entropy than low albite.

In NaAlSi3O8 glass, even with the position of one Na atom known, the positions of other Na atoms cannot be predicted.  This phase, although of the same composition as low and high albite, has the greatest degree of disorder and also has the highest entropy.  There is a close relationship between order (structure) in condensed phases and entropy, and it is apparent that greater degrees of disorder are reflected in higher entropies.  The same analysis holds for KAlSi3O8 phases (microcline = stable low temperature form, sanidine = stable high temperature form and glass).

Temperature, Entropy and Mixing
If a solid is heated, its temperature will increase and generally it will undergo structural transformations, eventually melt, and finally it may form a vapour (if it does not dissociate into other phases or species first).  Albite and K‑feldspar are examples.  At low temperature, low albite is the stable phase, but upon heating (energy acquired) it transforms to high albite, where the Al atom, initially resident on a unique tetrahedral site in low albite, resides on any of the four tetrahedral sites in high albite.  The site on which it resides cannot be predicted.  With acquisition of still more energy (more heating), high albite eventually melts to produce a liquid in which not even the positions of the Na atoms can be accurately predicted.  Clearly acquisition of energy and increased temperature have led to ever greater degrees of disorder, hence to greater entropies of the stable phase.  This is a generality; with increased temperature, condensed phases generally undergo transformations to phases of greater disorder, hence higher entropy.  From this it may be concluded that the entropy of a phase generally increases as temperature increases.

There is also a general correlation between volume and entropy.  Materials generally expand with an increase in their temperature, so that a positive correlation between entropy and volume is expected.  This is generally observed but not universally so; note the volumes of ice, water, and H2O gas.

ENTROPY AND ITS TEMPERATURE DEPENDENCE


Definition
Entropy is defined by the Equation:


dS  =  q/T
(3‑1)

where S is entropy, q is heat (transferred), and T is the temperature at which the heat is transferred. Noting that:


Cp  =  q/dT  and thus  q = Cp·dT


one can write


dS  =  Cp·dT/T  =  Cp·dLn(T)
(3‑2)

Temperature Dependence
If Cp is independent of temperature, Eq. (3‑2) can be integrated (first treating Cp as a constant) to obtain:


S(T2)‑S(T1) = Cp[Ln(T2)‑Ln(T1)]
    (3‑3)

If Cp is a function of temperature then the Maier‑Kelley heat capacity power function must be substituted for Cp in Eq. (3‑2):


dS = (a +bT + c/T2) dT/T
(3‑4)

and


dS = (a/T)dT + b(dT) + (c/T3)dT      
(3‑4a)

Integration of Eq. (2‑16a) from T1 to T2 gives:

S(T2) ‑ S(T1) = aLn(T2/T1) +


b(T2‑T1) ‑ (c/2)(1/T22 ‑ 1/T12)
(3‑5)




CHAPTER 4: Stability of Pure Phases as Functions of P and T



FREE ENERGY AND STABILITY OF PHASES AT HIGH P AND T


Introduction
     The GIBBS FREE ENERGY provides the means to determine, quantitatively, the stability of solids, liquids and gases at specific temperatures and pressures, whether in the lab or in natural settings.  The evaluation of stabilities can be done only when the temperature, pressure and composition of the system are clearly specified.  Although the Gibbs Free Energy is used to determine stability in a particular environment, its great value is as a tool to predict which reactions will, and which will not, occur at specific temperatures and pressures.  It is a fundamentally important quantity in the prediction of phase stabilities.  It allows prediction of stabilities on the scale of the Universe, down to the nanometre scale.

Free Energy (G)
The definition of Free Energy (G) is:


G  =  H ‑ TS
(4‑1)

but


H  =  E + PV
 

so that


G = E + PV ‑ TS
(4‑1a)

To obtain a general expression for the change in Free Energy as a function of temperature and pressure, one takes the derivative of Eq. (4‑1a):

dG = dE + PdV + VdP ‑ TdS ‑ SdT
(4‑2)

Note from previous work that


dE = q + w



q = CpdT


w = ‑PdV


and


dS = q/T = CpdT/T


Substitution of these into Eq. (4‑2) yields:

dG = CpdT ‑ PdV + PdV + VdP‑TCpdT/T ‑ SdT



(4‑3)

The first and second last terms of the right hand side cancel as do the second and third terms, so:


dG  =  VdP ‑ SdT
(4‑4)

This equation provides the means to calculate changes in the free energy of a phase or system with changes in either pressure or temperature. It is the most important equation to metamorphic and igneous petrologists, geochemists, and anyone who wishes to evaluate stabilities of phases and systems in the Earth's crust, mantle, or core.
Equation (4‑4) can be integrated to calculate stabilities at any temperature and pressure, provided that certain thermodynamic data are available.  To achieve this goal, Equation (4‑4) may first be integrated with respect to temperature (pressure held constant), and then integrated with respect to pressure (temperature held constant).

G as a Function of T
If pressure is kept constant, the first term on the right hand side is zero (dP = 0) so:


dG  =  ‑ SdT  (constant pressure)
(4‑5)

We do not have an expression for S, but we do have one for dS.  This can be integrated to obtain an expression for S.  It is convenient to obtain the indefinite integral from:


dS  =  CpdT/T
(4‑6)

or

dS  =  a(dT/T) + (bT/T)dT + (c/T3)dT
(4‑7)

The indefinite integral gives:


S  =  aLnT + bT ‑ (1/2)c/T2 + D
(4‑8)

where D is a constant of integration.

Equation (4‑8) now can be substituted into Eq. (4‑5) and the free energy integrated with respect to temperature:

   dG  = ‑ {aLnT + bT ‑ (1/2)c/T2 + D}dT



(4‑9)

Integrating both sides from T1 to T2 gives:

G(T2) ‑ G(T1) = ‑aT2LnT2 ‑ (a‑D)T2

‑ ()bT22 ‑ ()c/T2 + aT1LnT1 


+ (a‑D)T1 + ()bT12 + ()c/T1 


(4‑10)

Finally, the constant of the first integration, D, must be evaluated.  This can be done as follows. If one knows the value of S at STP (298.15 K, 1 bar pressure), then it can be substituted into Eq. (4‑8) so that:


D  =  S ‑ (aLnT + bT + (1/2)c/T2)




(4‑11)

These equations provide a means to calculate the free energy at any temperature T2 (where pressure is held constant).  Note that to evaluate Eq. (4‑10), the value for "D" obtained from Eq, (4‑11) must be substituted into Eq. (4‑10).  The equation should then be simplified.

G as a Function of Pressure
The previous section provides a means to calculate the free energy of reaction at any desired temperature at 100 kPa (1 bar) pressure.  Free energies of reaction as a function of pressure must also be obtained if the calculations are to be applied to conditions in the crust, mantle, or core.  The calculation of the free energy of reaction at any pressure (P2) is performed as a separate step from the calculation of the free energy changes due to temperature changes.

Beginning at STP, the free energy of reaction is first calculated at T2 and 100 kPa (1 bar) using the above equations.  The second step involves calculating the free energy of reaction for the pressure change from 100 kPa (at T2) to P2 (again at T2).  Consequently, this second step is performed considering the system to be at constant temperature (T2).  The equations necessary to perform the second step are provided below with some explanation.

Beginning with Eq. (4‑4), an expression for the change in G with a change in pressure can be obtained if the temperature is considered to be constant:


dG  =  VdP (T held constant)
(4‑13)

Pressure and Condensed Phases
The volumes of solids and liquids are very little affected by pressures up to about 10 kBars (1x106 kPa).  They are considered incompressible.   As a result, the integration of the right hand side of Eq. (4‑13) can be accomplished by treating V as a constant up to the indicated pressure.  As a result,:


G(P2) ‑ G(P1)  =  Vc(P2‑P1)
(4‑14)

where P1 = 100 kPa (1 bar). The subscript c on Vc indicates that we mean the volume of a condensed phase.

Pressure and Gaseous Phases
The integration of Eq. (4‑13) is not feasible for gases because they are compressible.  Consequently, another approach is required.  The way to deal with gases is best explained by considering first an ideal gas, then a real gas.  To integrate Eq. (4‑13) for gases, a functional relationship between volume of a gas and the pressure acting on the gas is needed. The ideal gas law is the appropriate expression for ideal gases:


PV = nRT or V = nRT/P
(4‑15)

Substituting this expression into Eq. (4‑13) yields:

                         dG = nRTdP/P
(4‑16)

which, when integrated yields


G(P2) ‑ G(P1) = nRTLn(P2/P1)
(4‑17)

The equation for real gases includes the compressibility factor "z" so:


PV = znRT
(4‑18)

Unfortunately, z is a complicated function of pressure and it is beyond the scope of this course to investigate the procedures by which the  volume of gases is obtained at high pressures.  It is sufficient to note that the form of Eq. (4‑17) is retained when applied to real gases, but the pressure of the gas (its partial pressure) is replaced by the fugacity of the gas (f) so:


G(P2) ‑ G(P1) = nRTLn(f2/f1)
(4‑19)

where f2 is the fugacity of the gas at pressure P2, and f1 is the fugacity of the gas at pressure P1 (the temperature is the same for both pressures). The fugacities of many gases have been tabulated for a wide range of temperatures and pressures.

The complete, generalized equation for calculating free energies at any temperature and pressure is given below as Eq. (4‑20). Before discussing it, however, definitions for the free energy of reaction and free energy of formation are introduced.

THE FREE ENERGY OF REACTION

Cristobalite (Cr) is observed in many sedimentary environments, filling fractures in soils and bedrock and as a cement of sediments.  One may ask if crystobalite is stable with respect to ‑quartz, the most abundant form of SiO2 under ambient conditions (i.e., near STP). To answer the above question, a reaction may be written between the two phases cristobalite and ‑quartz;

    SiO2(cristobalite) ( SiO2(‑quartz)
(1.9)

Just as the enthalpy change during a reaction is determined by subtracting the enthalpy of formation of the starting materials (reactants) from that of the products, the free energy difference between reactants and products defines the Free Energy of Reaction, (GR, which is summarized in the following Equation:

GR=pnpG°f(prod.) ‑ rnrG°f(react.)
(4‑20)
Note that the free energy of each reactant and product species must first be multiplied by its appropriate stoichiometric coefficient, np or nr. At this stage, we can apply the equation only at STP because only the free energies of formation at STP are tabulated.  Once we calculate the free energy of reaction, the following rules then apply (regardless of the P and T):

1
If the free energy of reaction (GR) is negative, then the reaction proceeding from left to right, as written, releases free energy.  The products consequently contain less energy than the reactants and are more stable than the reactants; the reaction should proceed with products being formed at the expense of the reactants.  In other words, if GR is negative, then the reaction, as written, is spontaneous.

2
If the free energy of reaction (GR) is positive then the free energy of the system would increase if the reaction were to proceed from left to right, as written.  The reactants are more stable than the products and the reaction would proceed spontaneously from the right to the left (the reaction would go "backwards").  The rate of reaction, however, is not determined by the magnitude of the free energy, but is determined instead by the kinetics of the reaction  (e.g., the activation energy for the reaction).  This latter point is incredibly important, but forgotten surprisingly often, even by scientists who should know better.

3
If the free energy of reaction (GR) is 0.0, then the species on the left and right sides of the reaction are equilibrated (at equilibrium), and no reaction will occur.

The Free Energy of Formation
As apparent from the definition of free energy (Eq. 4‑1 and 4‑1a), free energy, enthalpy and internal energy are related.  Just as enthalpy and internal energy cannot be measured absolutely, neither can free energy (because of the relationship among these).  As a result, and just as was required for evaluating enthalpies, there must exist a reference point (or datum level) to which the free energies of all constituents are referred.  This reference state is an element in its most stable state (of matter) at STP (the standard state, as before).  Again, we can only refer to changes in the value of free energy with respect to the reference state element, so the free energy change, (G° for an element in its reference state is 0.0 (just as for enthalpy).  As examples, graphite is the most stable form of carbon at STP, so the free energy change between it and the standard state is 0.0 J/mol.  For oxygen, O2(gas) is the most stable form at STP, so the free energy difference is 0.0 J/mol at STP.  For mercury, liquid mercury is the most stable form at STP and its free energy change is 0.0 J/mol.

For all other constituents and compounds, their free energy is referred to the stable elements by calculating the free energy of reaction to produce 1.0 moles of the species or compound (e.g., any pure mineral) from the constituent elements in their most stable states at STP (in their reference states).  This free energy of reaction has special significance and is referred to as the free energy of formation (G°f).  To reiterate, G°f is the free energy of reaction of the elements (in their most stable state) to form one mole of another species (e.g., a mineral such as forsterite). These values are provided in numerous texts and monographs.

Gr at High T and P
Equations (4‑1) to (4‑19) are completely general and allow calculation of free energies of systems and phases at any pressure and temperature.  Most importantly they allow calculation of the Free Energy of Reaction at any pressure and temperature.  The GR and G°f, the S°R, aR, bR, cR, and V°R are all substituted for the respective symbol in the equation for Free Energy.  For all these reaction quantities, the sum of the appropriate value for each of the products is subtracted from the sum of the appropriate value for each of the reactants (each product and reactant is multiplied by its stoichiometric coefficient in the balanced reaction).  For example, at STP:

     GR = PnPG°f(Prod.)

                ‑ RmRG°f(React.)
(4‑20)

where GR is the free energy of the reaction, the subscripts P and R represent the product and reactant species involved in the reaction and G°f is the Free Energy of Formation. H, S, a, b, c and V may be substituted for G in Eq. (4‑20).

Reactions Involving Solids & Gases
Where gases and solids are included in a reaction, the free energy of reaction contribution resulting from a change in pressure is separated into two parts, one reflecting the contribution from the condensed species (solids and liquids) and one reflecting the contribution of the gaseous species.  The two terms arise from the fact that condensed species are effectively "incompressible" and gases are highly compressible.  Consider a reaction where a gas is liberated during reaction, and one wishes to calculate the free energy of the reaction at some pressure P2: 


Mg(OH)2(s)  MgO(s) + H2O(g)  
(4‑21)

Both solids and gases are involved in the reaction.    The free energy of this reaction at P2 is calculated according to:

GR(T2,P2) = GR(T2,P1) + Vc(P2‑P1) +

RT2Ln(2/1).
(4‑22)

where GR(P2) is the free energy of reaction at 298.15 K and P2, and GR(P1) is the free energy of reaction at 298.15 K and P1 (100 kPa or 1 bar pressure).  Vc(P2‑P1) provides the change in free energy of reaction contributed by the condensed phases resulting from a pressure change from P1 to P2, and the last term, RT2Ln(2/1), provides the change in free energy of reaction contributed by the gaseous species and changing pressure from P1 to P2. Note that the last term is multiplied by the stoichiometric coefficient of the gas in the above reaction.  For each gas involved in the reaction there is a RT2Ln(2/1) term which is multiplied by the stoichiometric coefficient of the gas in the reaction (‑ve for reactants, +ve for products). See Eqs (4‑14) and (4‑19) for development of the two pressure terms of Eq. (4‑22).

Clausius‑Clapyron Equation
Where only condensed phases are involved in reaction (e.g., one or more solids react to form one or more solids as products), a relatively simple means exists to determine the slope of the reaction curve in P‑T space. The reaction curve is defined as the locus of points in P‑T space where the reactants and products are equilibrated (GR = 0).  Changes to free energy as a function of temperature and pressure are given by Eq. (4‑4).  This equation is completely general and thus applies to the free energy of reaction so that:


d(GR) = VRdP ‑ SRdT
(4‑23)

Because everywhere on the reaction curve GR is zero (i.e., everywhere along the reaction curve the free energy of reaction is zero) then d(GR) = 0 and:


SRdT = VRdP


or


      dP/dT  =  SR/VR
(4‑24)

The slope of the reaction curve (dP/dT) in P‑T space is consequently provided by the entropy change of reaction divided by the volume change of reaction.  If SR/VR is independent of P and T, then the reaction curve (equilibrium curve) is of constant slope in P‑T space and will be represented by a straight line of slope SR/VR.  If one also knows one point on the equilibrium curve, then the intercept of the straight line can be calculated and the equilibrium curve plotted on a P‑T diagram.  It turns out that SR/VR is very insensitive (effectively constant) in reactions involving only solids and liquids (condensed phases). This implies that the SR/VR calculated at STP can be used to calculate the slope of the equation for all P‑T conditions.  The Clausius‑Clapyeron equation therefore is a very convenient way to calculate reaction curves in P‑T space.  These arguments are decidedly not true in reactions involving gases. 

THE INTEGRATED EQUATION FOR Gr AT HIGH T AND P
The free energy of reaction, the enthalpy of reaction and the entropy of reaction can be calculated for any temperature and pressure from the following equations.

Free Energy of Reaction at T and P:  The first equation allows calculation of the free energy of reaction (involving pure components or phases) at any desired temperature and pressure (G°R[T,P]).  The first three terms on the right side of the equation are derived from Eq. 4‑12 (with Eq. 4‑9 substituted into it and the constants of integration identified).  These terms represent the calculation of G°R at temperature T and pressure = 1 bar (i.e., integration in temperature with pressure held constant at 1 bar).

The last two terms on the right side of the equation involve pressure, and represent the changes to G°R resulting from the pressure changing from P = 1 bar to the pressure of interest (P). The integration in pressure is done while holding temperature constant at T.



G*R(T,P) = G°R(at STP) ‑ S°R(T‑Tr)

                    + aR[T‑Tr‑TLn(T/Tr)] +  [(c°R‑b°RT/(Tr)2)(T‑Tr)2]/[2TTr]2
        + V°R(at STP)(P‑Pr)  +  gngRTLn[g(T,P)/°g(Tr,Pr)]
(4‑25)

____________________________________________________________________________

The superscript * indicates that the free energy of reaction at P and T involves only pure phases (no solid, liquid, or gaseous solutions). The expression for the free energy of reaction that takes into account solid, liquid or gaseous solutions is developed subsequently.

The superscript ° indicates that the free energy of reaction at STP (G°R[at STP]) involves only pure components or phases. As a result of this, G°R(at STP) = G°f, which is the free energy of formation, as discussed previously.

The subscript "R" indicates "of reaction", the subscript "r" indicates the reference temperature or pressure (STP) T and P represent the temperature and pressure at which the free energy is to be calculated. Tr and Pr represent the temperature 298.15 K and 1 bar pressure (100 kPa).

The symbol g indicates a sum of these terms for each gas "g" in the reaction. R is the gas constant, ng is the stoichiometric coefficient of the gas "g" in the reaction (‑ve if a reactant, +ve if a product).  The fugacity of the gas at the temperature and pressure of interest is represented by g(T,P) and °g(Tr,Pr) is the fugacity of the gas at STP (= 1 bar)


CHAPTER 5: Solid, Liquid and Gaseous Solutions



CHEMICAL POTENTIAL, GR,  AND THE EQUILIBRIUM CONSTANT


Chemical Potential of Components in Solutions
The free energies of reaction so far considered have included only pure phases in the reaction.  In reality, most minerals are solid solutions, all waters are aqueous solutions, and most gases are gaseous solutions.  The compositions of these solutions affect the free energies of reaction.  To accommodate this effect, the "concentrations" of individual components of these solid, aqueous or gaseous solutions must somehow be included in the calculation of the free energy of reaction. Consider first, however, an example where solid solutions may affect mineral stability.

Consider the hydration of a peridotite to produce a serpentinite.  Olivine and orthopyroxenes are two common phases of unaltered peridotites and serpentine is a common secondary product in peridotites. There is, however, Mg‑Fe solid solution in all three phases; that is, some Fe is substituted for Mg in olivine, enstatite and serpentine minerals.  As consequence, there are at least two components in these phases; the components are Mg2SiO4 and Fe2SiO4 in olivine, MgSiO3 and FeSiO3 in enstatite and for serpentine solid solution the components are Mg3Si2O5(OH)5 and Fe3Si2O5(OH)5.  With these components one may consider the stability of the Mg components of these solid solutions according to the reaction:


Mg2SiO4 + MgSiO3 + 2H2O => Mg3Si2O5(OH)5


If the olivine, opx and serpentine minerals were pure Mg end‑member components, the free energy of this reaction could be calculated from Eq. (4‑25).  They are not pure in nature and Eq. (4‑25) includes no consideration of the effect of solid solution on the free energy of the Mg components of these solid solutions.  A new thermodynamic property called the chemical potential is introduced to accommodate solutions.  It is represented by the symbol µ. It is also referred to as the partial molar free energy, which emphasizes that the chemical potential is a free energy that accommodates solutions.  Without developing the theory, we present the equation for the chemical potential below.  Although there is just one general form for the relationship, three equation are shown, one for each of (a) solid solutions, (b) aqueous solutions and (c) gaseous solutions.  The three equations have the same form.  They are composed of two terms, a constant (standard state chemical potential) and a second (logarithmic) term, which is related to the composition of the of the solid, liquid or gaseous solution through the thermodynamic properties of activities or fugacity.

Activity, Fugacity and Concentration
For component "i" of a solid solution, for the solvent (H2O) of aqueous solutions and for components of liquid solutions (e.g., acetone+H2O):

  (i,T,P)  = µ°(i,T,P) + RTLn(ai/a°i)

where a°i = 1
(5‑1a)

For Solutes of Aqueous Solutions:

  (i,T,P)  = µ°(i,T,P) + RTLn(ai/a°i)

where a°i = 1
(5‑1b)

For gaseous components of gas mixtures:

  (i,T,P)  = °(i,T,P) + RTLn(i/°i)

where °i = 1
(5‑1c)

where (i,T,P) is referred to as the chemical potential of component "i" in the solid solution at T and P, °(i,T,P) is the standard state chemical potential of pure "i" at T and P.  At STP, µ°(i) is equal to the molar free energy of formation of "i", a value that is available from thermodynamic tables.  R is the gas constant, T is the temperature (K) and ai is the activity of component "i" in the solid or liquid solution and i is the fugacity of gaseous component "i" in a gaseous solution.

The chemical potential of the Mg2SiO4 component in olivine [Eq (5‑1a)] at a given T and P is: 

  (Mg2SiO4,T,P) = °(Mg2SiO4,T,P) +

RTLn(aMg2SiO4)
(5‑1d)

If T and P are 298.15 K and 1 bar (100 kPa), then °(Mg2SiO4,T,P) is equal to the molar free energy of formation of forsterite, which can be found in tables of thermodynamic data.  At any other T and P, Mg2SiO4,T,P) is G*r of Eq. (4‑25) where the reaction is the same one used to obtain the molar free energy of formation (reaction of the elements in their most stable state to form the constituent of interest, forsterite in this case).

The logarithmic term in each of Eq. (5‑1a to c) is related to the concentration of the component "i' in the solution.  Activity and fugacity are directly proportional to concentration.  Introducing a proportionality constant for solid solutions and for the solvent of liquid solutions yields:

  ai  =  iXi  (Solid Sol'ns & Solvents)
(5‑2a)

where i is the activity coefficient and Xi is the mole fraction of "i" in the solid solution or mole fraction of solvent in an aqueous solution. For solutes in (aqueous) solutions:

  ai  =  imi  (Solutes in Solutions)
(5‑2b)

where i is the activity coefficient and mi is the molality of "i" in the solution.  (Molality is the number of moles of solute in one kilogram of solvent.  Compare with molarity, which is the number of moles of solute in one litre of solution).  

For gaseous species "i" in a gaseous solution:

      i  =  iPi  (Gaseous Solutions)
(5‑2c)

where i is the fugacity coefficient, i is the fugacity of species "i" in the solution and Pi is the partial pressure of "i" in the solution, as given by Raoult's Law: 


Pi  =  XiPT
(5‑2)

where PT is the total pressure on the gaseous solution and Xi is the mole fraction of 'i" in the gas.

Solid Solutions: The activity of a component in a solid solution is defined so that the activity of the component approaches 1.0 as the mole fraction of component approaches 1.0.  As a result, when component "i" constitutes 100% of a solid solution then ai and Xi both equal 1.0 (e.g., if Mg2SiO4 is the only component of an olivine grain then the activity will be aMg2SiO4 = XMg2SiO4 = 1.0).  Because the logarithm of ai is taken in the chemical potential equation, the term becomes 0 for pure phases.

The relationship between ai and Xi also implies that the proportionality constant (activity coefficient), i approaches 1.0 as Xi approaches 1.0 (phase composed of pure "i"). In fact the activity coefficient approaches 1.0 well before Xi = 1.0.  In most solid solutions i is close to 1.0 for Xi > 0.7.  As a result, Xi can be substituted for ai in Eq. (5‑1a) whenever Xi>0.7.  Mole fractions (Xi) can be obtained directly from chemical analysis of solids, and chemical potentials can be readily calculated for components of solid solutions.

Gaseous Solutions:  The fugacity of a gas (i) is defined so that it approaches the partial pressure of the gas (Pi) at low total pressures. Below about 2 bars total pressure i and Pi are effectively equal.  This implies that the fugacity coefficient is effectively 1.0 at low total pressures.  As a result, the partial pressure of a gas can be substituted for the fugacity in Eq. (5‑1c) for ambient conditions (conditions near STP).

Solutes of Aqueous Solutions:  The activity of a solute in aqueous solution (e.g., Na+) is defined so that ai approaches mi (molality) at very low total dissolved solids contents of the solution (in infinitely dilute solutions).  The activity coefficient therefore approaches unity as infinite dilution is approached.  The molality, thus, can be substituted for activities of solutes in dilute solutions, such as rainwater and dilute river waters.  The Debye‑Huckel theory provides a means to estimate activity coefficients in natural waters that are more dilute than seawater.  The Debye‑Huckel equation is introduced in fourth year.

Relation between i and (GR
The first term of the right side of each equation, Eq. (5‑1a to c) is the standard chemical potential of the pure component i at the T and P of interest.  When T = 298.15 and P = 1 bar (= 100 kPa) this term [°(i,T,P)] is equal to G°f, the standard state free energy of formation, of "i" at STP.  If T and P are different from STP, then the free energy of the pure components is G*R, as calculated from Eq. (4‑25), where the reaction is again that involving the elements in their stable states (at STP) reacting to form the pure component "i". Although the reaction occurs at T and P different from STP, it still is a special reaction akin to the G°f, so we give it a special symbol, superscripted asterisk to indicate it is a reaction in which the elements combine to form the pure component "i".

THE EQUILIBRIUM CONSTANT
The equations for the chemical potential should be used to evaluate GR wherever solutions are involved. Thermodynamicists simplified the treatment by defining a new term called the equilibrium constant, as emphasized with the following generalized reaction.  Consider the reaction:


aA + bB (  dD + eE
(5‑3)

Following is an equation for the chemical potential of each species involved in the reaction, with each equation here multiplied by its appropriate stoichiometric coefficient:

dD  =  dD + dRTLn(aD)

eE  =  eE + eRTLn(aE)

aA  =  aA + aRTLn(aA)

bB  =  bB + bRTLn(aD)

Note that the denominator of each logarithmic term has an implied value of 1.0 (i.e., unit activity or fugacity).  The equations can be simplified by the following substitutions:

GR  = dD + eE ‑ aA ‑bB
(5‑4)

and G*R = dD + eE ‑ aA ‑bB
(5‑5)

Also, the logarithmic terms can be collected by taking the stoichiometric coefficient inside the logarithmic term:

     RTLn(KR) =

            RTLn{[(aD)d(aE)e]/[(aA)a(aB)b)]}
(5‑6)

or

KR = [(aD)d(aE)e]/[(aA)a(aB)b)]
(5‑7)

With these terms defined, then:

GR  =  G*R + RTLn(KR)
(5‑8)

The value for G*R is obtained from Eq. (4‑25) for any T and P.  If calculations are for STP then G°R may be used (i.e., Eq. 4‑25 in that all temperature- and pressure-containing terms are zero).  

