300B Fingerprint Lab 

    REMEMBER: CA = CA0 / x,  k = 0

    This lab provides an insight, firstly into the ‘fingerprinting’ identification techniques used to identify the tectonic environment in which igneous rock form, and, secondly, into the fractionation process involved in continental growth during continental rifting.

    EXERCISE 1

    The following table contains a set of major and trace element abundances and abundance ratios characteristic of volcanic rocks representative of all the main tectonic environments. Use the plotting sheets provided to estimate the fractionation level (low, moderate, high) and environment of formation (MORB, oceanic arc, continental margin arc, rift, alkalic, shoshonitic, etc) of each analysis. Some of the analyses may give ambiguous answers - which ones and why?

    d = REE, depleted; f = REE, flat pattern; e = REE, enriched. Y* = 3Y/((Ti/100)+Zr+3Y)

    LREE Cr     TiO2     Zr     Ti/Zr     Y     Y*     Ni     Al203     Nb     Ba     K2O     SiO2

    Anomolous Somali basin site 236 37-2 118-120 Bryan et al
    1) d     215     .57     41         83     20     44     20     14.20         1       9       .03           55

    N-type 3-18 Frey et al
    2) d     470     .73     45         97     25     46     200     16.2         3         4     .01           50

    T-type Cent Cord GTJ422 Diabase Gp Millward et al.
    3) f     437     1.08     55     118     18     31     140     14.4         5         53    .18          50.5

    E-Type 2-10 Frey et al
    4) e     250     1.51     100     91     25     28     95     15.80         20     200     .51         51.0

    Continental flood basalt US11 Thompson et al.
    5) e     230     1.42     143     60     20     21     101   15.44         14     394     1.00       50.4

    Alkalic 1845 St. Georges Church Addis Ababa Thompson et al.
    6) e     33       2.38     224     64     28     18     49     16.74         45     360     1.24       46.4

    Boninite 1403-34 Mariana Dietrich et al
    7) d     821     .21         39     32    30     65   272     10.60           2       2        .001       55.6

    Oceanic arc Eua E7
    8) d     75     .73           37  118    20     42     24      20.6             2     27        .30         51.6

    Oceanic arc Macauley 10380
    9) e     75     .95           37  154     13     30     37     15.67           1   145       .40          49.2

    Oceanic arc Lau 374
    10) e     31   .96         100   58      29     36     17     17.33           3   116     1.00         55.3

    Shoshonite arc Mba volcanics Fiji 68-63
    11) e     3     .54           67   48     13     28        6     17.04         1     677     4.00         50.5

    Back arc Casma Fm Peru Atherton et al
    12) f     320  .48          26 111     14     43     96     14.67             2 269         .22         48.2

    Oceanic MORB, Korombasanga
    13) d   111 2.45        225   57     31     20     81     16.77             7 233        1.16         48.0

    Korombasanga 382
    14) e   737     .7         34     124     13     34     187     14.11         3     197         .63     48.4

    Korombasanga 372, arc basalt
    15) e   100     .84       32     158     15     35       35     18.32         1     131         .62     48.2

    Peruvian Andes J3-5 Noble
    16) e     250 1.39     225       37     35     25       79     16.8         12     768         1.8     52.8

    Chilean Andes #3 Siegers and Anders
    17) e     85     .8      180        27      7        8       30     16.1           1     720         2.7     61.5

    Chilean Andes #18 Siegers and Anders
    18) e   500     .8     170         28       5       6     195     15.9             1     300       1.1     54.7

    Chilean Andes #22 Siegers and Anders
    19) e 230     .7     200         21         5     5       210     15.4             1     490       2.3     60.4

    LREE Cr   TiO2   Zr       Ti/Zr      Y     Y*      Ni      Al203         Nb     Ba      K2O   SiO2

------------------------------------------------------------------------------------------------------------------------------------------

    EXERCISE 2

    The most important process operative in the ‘mantle to crust’ part of the Earth system cycle is that of mineralogical/chemical fractionation. For example, quartz arenaceous sedimentary rocks, representing tropical beaches of nearly pure quartz, form via a long complicated process of fractionation of ultramafic mantle source material - material that itself contains no quartz. The following exercise illustrates a ‘normative’ method of testing the validity of a supposed fractionation relationship between typical volcanic rocks extruded in a rifting environment.

    The following table present the weight % proportions of normative minerals in two basaltic rocks (S40, S51) from the Afar rift in north east Africa. The basalts are thought to be related through fractional crystallization (Barberi, F. et al., 1975. A transitional Basalt - Pantellerite sequence of fractional crystallization, the Boina Centre (Afar Rift, Ethiopia), Journal of Petrology, 16, 22-56). You do not need to know how to carry out a normative calculation; but you should know what is meant by ‘normative mineral’, ‘basalt’, ‘fractional crystallization’, and ‘cumulate’, and even the location of the Afar.)

    Samples                    S40           S51
    Normative %
    or                              3.5              6.5
    ab                           20.5             24.5
    an                           29.2             29.8
    cpx                         23.5             11.7
    opx                          7.4                8.7
    ol                             7.0                3.1
    mt                            3.5               8.2
    il                              3.7               5.4
    ap                            0.7               1.2
    Total                      100               100
    Ce                          38.9              53.2

    FeOt/MgO wt%     1.27  2.17
    TiO2 wt%               1.92  2.84 (TiO2 is greater than FeO/MgO, as is typical of rift basalts)

    Assuming that Ce is totally incompatible (k = 0) with any of the fractionated minerals, calculate the proportion of liquid represented by sample S51 relative to sample S40 for a constant amount of Ce (CCe = cce0 / x,). Then calculate the relative proportion of the minerals in the normalized fraction of S51. Compare the composition of S40, the source basalt, with the supposed fractionated basalt S51. Is the fractional crystallization model plausible? Does it need to be modified?

    Samples             S40                     S51     es38.9/ces53.2 (= 0.7312)      cumulates
 
or   3.5    6.5   4.75 =  -1.25 (Larger -ve)
ab 20.5 24.5  17.91 =   2.59 
an 29.2 29.8 21.78 =  7.42
cpx 23.5  11.7 8.55 = 14.95 
opx  7.4 8.7 6.36 = 0.82
ol 7.0  3.1 2.27 = 4.73 
mt  3.5 8.2 6.0 = -2.5 (Larger -ve)
il  3.7  5.4 3.95 =  -0.25 (Small -ve) 
ap 0.7 1.2 0.88 = -0.18 (Small -ve) 
other 1.0 0.9 0.65 =  0.35 
Total 100% 100% 73% =  27% 
Ce 38.9 53.2  38.9 = 0

    Source basalt would have to be richer in K2O, TiO2, Fe2O3, and P2O5

    In the following table, sample G495 is another relatively primitive basalt from the same region:

        Samples                 G495         S51
        Normative %
        or                              4.7         6.5
        ab                            22.8       24.5
        an                            23.5       29.8
        cpx                          19.4       11.7
        opx                            2.7         8.7
        ol                             15.1         3.1
        mt                              4.6         8.2
        il                                4.4         5.4
        ap                              1.1         1.2
        other                         1.7         0.9
        Total                     100%      100%
        Ce                             35.9     53.2
        FeOt/MgO wt%     1.12        2.2
        TiO2 wt%               2.3         2.84 (again, G495 is high in TiO2 relative to FeOt/MgO, typical of rift basalts)

Is it feasible that basalt S51 was derived from basalt G495 by fractional crystallization? What other process may have played a role in linking G495 to S51?

Samples                 G495                 S51     ce35.9/ce53.2 (= 0.6748)       Cumulates
 
or  4.7 6.5 4.39 = 0.31
ab 22.8 24.5 16.53 = 6.27
an 23.5  29.8 20.11 = 3.39
cpx 19.4 11.7   7.90 = 11.50
opx   2.7   8.7   5.87 = -3.17 (Large -ve)
ol 15.1   3.1   2.09 = 13.01
mt   4.6   8.2   5.53 = -0.93 (Small -ve)
il   4.4   5.4   3.64 = 0.76
ap    1.1    1.2   0.81 =  0.29 
other   1.7   0.9   0.61 =  1.09
Total  100% 100% 67.5% = 32.5%
Ce 35.9 53.2 35.9 0 

    Negative Opx would mean that orthopyroxene would have had to have been added to S51, which is unlikely.             Alternatively, we could consider that S51 contains a fraction of SiO2 that has been added through the assimilation of continental crust. In this case the -3.17 opx could be considered the equivalent of -3.17 olivine (ol) and -3.17 Quartz (qtz), and the fractionated solid inventory would have olivine as 13.01 - 3.17 = 9.84, and the residual liquid an assimilated addition of 3.17 SiO2.

    Notes: molecular weights of major elements and normative minerals, and %SiO2 content of normative minerals.

    CaO = 56.08; MgO = 40.31; FeO = 71.85; SiO2 = 60.09; Al2O3 = 101.96; Na2O = 61.97
    CaMgSi2O6 = 216.51; %SiO2 = 55.5%.
    CaFeSi2O6  = 248.11; %SiO2 = 48.44.

    Mg2SiO4     = 140.71; %SiO2 = 42.7
    Fe2SiO4       = 203.79; %SiO2 = 29.48; SiO2-80% Fo = 40.6
    CaAl2Si2O8 = 278.22; %SiO2 = 43.78.
    NaAlSi3O8   = 262.22; %SiO2 = 68.75; SiO2-50% Ab = 56.27; SiO2-30% Ab = 51.27; SiO2-20% Ab = 48.77