Koenemann

Koenmann March 4 11 7.44pm

I submitted a "Comment" to a paper by Xypolias (December
2010) to the Journal of Structural Geology. My comment was rejected bythe Editor, Cees Passchier: "The reason is that [my Comment] is not really adressing issues in this particular publication, but is an treatise discussing a general problem". Passchier made the decision
himself. 

Xypolias reviewed the vorticity analysis methods in mylonites. The evidence most relevant in this context is the delta-sigma porphyroclast dividing line discovered by Passchier & Simpson (1986)
which is commonly very close to 69-70° to the shear zone boundaries (e.g. Kurz & Northrop 2008). 

I think that this entire discussion is for the birds. In my Comment I quoted 14 (fourteen) major textbooks on continuum mechanics –including Truesdell (1954) "The Kinematics of Vorticity" on which this entire discussion is founded – in none of which any mention is made, directly or indirectly, that there are bonds in solids, starting with Cauchy (1827), and ending with Holzapfel (2000). That is, according to this theory a solid is just a very dense ideal gas without coherence.
This is only one of my reasons why I think that continuum mechanics is a worthless theory (there are others). I want to see anyone claiming that bonds are not important for the understanding of solids. 

Furthermore, I pointed out that this fabric-dividing angle at 69-70° is identical to a direction predicted by my theory of deformation (published 2008) which takes bonds in account. That is, I think that the observation by Passchier & Simpson (1986) is very important indeed, but that it means something entirely different: it marks the contracting eigendirection of ideal simple shear deformation in bonded continua. 

Now Passchier rejects my Comment because he believes that the "general problem", existence of bonds in solids, is not relevant to the understanding of vorticity. 
 
Those interested in mylonites and vorticity, and a view which Passchier chose to suppress, can make up their own mind <www.elastic-plastic.de/Vort_draft_101222.pdf>. It is only three pages
long. Let's see if you still trust any paper on simple shear and vorticity after reading this. 

Those interested in a paper that refutes the current theory of stress and elasticity should download <www.elastic-plastic.de/Koenemann2008-2.pdf>. Please let me know if you have any questions. 

             Urai March 7 11            3.37am

Dear members of this discussion group, (especially those who are not familiar with the long history of this discussion - see e.g. http://imechanica.org/node/5321).

One of the fundaments of critical thinking is that "Extraordinary claims require extraordinary proof." (Marcello Truzzi) cf. http://en.wikipedia.org/wiki/Marcello_Truzzi

I hope that all of you agree with me that " continuum mechanics is
a worthless theory" is an extraordinary claim. Of course, there is nothing wrong with extraordinary claims in physics, and as long as they are supported by extraordinary, reproducible, experimental evidence, they can lead to scientific revolutions. 

As far as I know, Koenemann has never presented the extraordinary experimental observations which are required to convincingly show that his theory is superior to existing ones.

Continuum mechanics on the other hand has been tested in countless experiments and has been shown to be accurate.


Koenmann March 7 11  6.07am

Reply to "Janos Urai"

> Dear members of this discussion group, (especially those 
> who are not familiar with the long history of this 
> discussion - see e.g. http://imechanica.org/node/5321).
> 
> One of the fundaments of critical thinking is that 
> "Extraordinary claims require extraordinary proof." 
> (Marcello Truzzi) cf. http://en.wikipedia.org/wiki/Marcello_Truzzi

Proof given and published, see www.elastic-plastic.de/koenemann2008-2.htm

> I hope that all of you agree with me that " continuum mechanics is
> a worthless theory" is an extraordinary claim. Of course, 
> there is nothing wrong with extraordinary claims in physics, 
> and as long as they are supported by extraordinary, reproducible, 
> experimental evidence, they can lead to scientific revolutions. 
> 
> As far as I know, Koenemann has never presented the 
> extraordinary experimental observations which are required 
> to convincingly show that his theory is superior to existing ones.

Besides, a theory can be proven wrong in several ways, not just experimentally. If a theory can be shown to predict that a physical process does not cost physical work, it is a perpetuum mobile theory, and wrong by definition. In the paper linked above, published 2008, I have demonstrated three times, using different textbooks, that the common theory of stress must cogently predict that an elastic deformation does not cost physical work. Nobody ever claimed that my proof is wrong. 

Show me any book on continuum mechanics which mentions bonds. In 30 years I have not found one. Now, are bonds important for the understanding of solids or not? 

Koenmann March 7 11  6.12am

In my reply to Janos Urai I wrote
> Proof given and published, see 
> www.elastic-plastic.de/koenemann2008-2.htm 
it should be www.elastic.de/koenemann2008-2.pdf


Koenmann March 16 11 4.12pm    Discourse 1

Euler made a grave mathematical mistake

Euler postulated the stress tensor in 1776. Why? 

He was probably the first to seek a solution to spatiality, and found it necessary to describe the properties of a vector in space as the function of another vector in space. So he chose a point of interest Q, let planes pass through it in all directions, and let force vectors change direction as a function of the orientation of the plane. The concept looks so simple that one wonders why it should be wrong. But it is. Let's look at scalars first. 

That 1 + 1 = 2 is known for as long as people counted objects. The recognition that 1 – 1 = 0 is much younger. Originally it was thought that 1 – 1 = nothing. To understand that "nothing" is a number, (1) one needs to separate objects from numerals, (2) one must understand that 1 and –1 are two different numbers, (3) one must accept that zero is a number too. This was done in India only 1500 years ago, when zero was defined as the sum 1 + -1 = 0. Zero is the only number without a sign. 

In the 17th century CE the necessity arose to describe objects which had more than one property – one relating to arithmetic, the other relating to geometry, that is: magnitude and direction, the vector. For us it is worth noting that these vectors were all free vectors, or discrete vectors. A discrete vector can be given like [sin pi cos pi], and observed at a point P; a vector field requires a generating function which assigns a vector to every point in space. They cannot be transformed into one another, mathematicians use separate notations for them. Whether a vector quantity is a field vector or a discrete vector is decided by the physical problem. Newton's mechanics involves free vectors, and this was the only concept Euler knew. He died in 1783. Vector fields were invented by Lagrange in 1784.

Vectors describe directions in space, but not space itself, this is done through coordinates. Lack of precise rules made people handle them intuitively, and with great liberty. Cauchy's writings show a conceptual innocence that was paradisiacal. None of this would be permitted today. This stopped when Hermann Grassmann discovered linear algebra and the rules for vector spaces, matrices and tensors in 1860. Cauchy died in 1857. 

The Euclidean space is the space in which every point can be given by its coordinates. Grassmann realized that we need a unique correlation of notation and object such that 

- no notation can describe more than one object, 

- no object can be described by more than one notation, and 

- that the zero object exists. 

"Objects" may be points, vectors or planes if the latter are given by the normal vector emanating from the coordinate origin. In the most common notation used today (found by Otto Hesse ca.1845) the vectors [2 3] and [-2 -3] are two different vectors, and their sum is the zero vector [0 0]. If they indicate planes, they are at opposite sides of the origin Q, and parallel to one another. 

Every coordinate system has a singularity at its origin: an object with the notation [0 0] has no properties. The zero vector is by definition a vector without magnitude and direction or sign – the equivalent to the scalar number zero. It follows that any plane that passes through the origin Q has the zero vector as notation; its direction cannot be defined. We cannot calculate with it. 

The rules of vector spaces, known since 1860, collide head-on with Euler's stress concept from 1776. Euler innocently used the convention that a plane passing through the point of interest Q and perpendicular to the x-axis has the notation v = [x 0 0] in 3D. But so does the vector –v = [-x 0 0], the notation is non-unique; and the zero object does not exist in his convention, the operation v – v is meaningless. Moreover, planes at points other than Q cannot be described, we can do this only in the Hesse notation. But we cannot use two mutually exclusive conventions simultaneously. Euler's convention for planes in space violates the properties of Euclidean space. His notation of planes in space, and thus his concept of the stress tensor, is invalid. 

Koenmann March 18 11 7.09pm     Discourse 2

Page 2: Euler made a grave physical mistake
Why did Euler define stress as a form of pressure? Why did he contradict Newton? 

Newton's mechanics is the mechanics of discrete bodies in freespace which interact by collision. The forces involved are readily and correctly described by free vectors which act upon a point. 

This differed strongly from the situation within distributed matter where discreteness does not exist. The only example of a force distribution known then in the 18th C was that of pressure, force per area. The ratio f/A is known to be scale-independent. Thus Euler began to ponder force distributions on planes, and planes in space; the result was the stress tensor. At this point it was just a postulate. 

There is much to say about distributions, but that must wait. Here I discuss the Euler-Newton contrast. 

The force f acting on a plane can be decomposed into the plane-normal component and the plane-parallel component using the plane-normal vector. The magnitude of the latter is unconstrained, it was taken to be an unit vector n. Here Euler contradicted Newton. Let's compare: 

Newton considered discrete bodies of given size and shape, and he realized that the center of mass Q is an unique point about which a freely spinning body rotates. Any mechanical force acting upon the body must have its point of action P on the surface, hence there is a radius r = QP with which the force f interacts. The force may be decomposed relative to r, and the body does not experience an angular acceleration if the sum of all torques rxf = 0. r is a function of the shape, and r is a lever, that is: r is mechanically significant. Note that neither the surface nor its orientation is important in Newton's mechanics, only the points P of which it is made, and their spatial relation to Q. 

A lever is a distance in space within a solidly bonded body. The absolute requirement for the lever to exist is that there is continuity of bonds – not mass continuity, bond continuity matters. But the earliest paper known to me that mentions bonds is from ca.1850, neither Euler nor Cauchy knew about them. 

Euler's concept could be physically valid if it were possible to transform Newton's r and Euler's n into one another. This is not possible. Nobody has ever shown that n is a physically meaningful term, i.e. a lever. It follows that shear force and normal force, or shear stress and normal stress, following Euler, are physically irrelevant terms. This should not be surprising, because the product |f||r| is a [Joule] term which relates to the work done; whereas |f||n| is just |f|. 

There are various ways in the literature how Newton's torque f´r is to be handled; none of them was convincing, especially not in Truesdell's works, because the distance term involved is not explicitly a lever, i.e. a distance within a solid. These distance terms may be distances in freespace since bonds are never mentioned anywhere in the textbooks – literally, I have searched dozens of textbooks, and have not found mention of bonds. Thus, continuum mechanics has forgotten to define what a solid actually is. This is neither continuum nor mechanics, it is bogus. 

Why did this concept survive for so long? Because authority can mislead. There are two giants of science involved here who both erred – Leonhard Euler who has some 900 papers to his name, plus his most prominent victim Augustin Cauchy who wrote only 800 papers. Cauchy mentioned the torque |f´r| in his paper on stress theory, but perfunctorily set it to zero, no reason given. He completely ignored the fact that r is shape-dependent. No freshman would get away with this today. Then he turned to the relation of f to n, thereby assigning a physical importance to it which it does not have. Since n assumed the place of r, the radius of the volume element was assigned unit magnitude. This has the effect of an unrecognized boundary condition – which generally does not hold. 

It is time to state it openly and publicly: Newton is right, and Euler was wrong. f´r is sound physics, f´n is not. Believing Euler is an exercise in self-deception. 

Koenmann March 21 11 6.17pm     Discourse 3

Page 3: Continuum mechanics is a perpetuum mobile theory (1)
In order to assess Cauchy's theory properly it helps to realize that in all the 16 papers by Cauchy which I have studied I have not found one single mention of physical work. That's too bad; he would have found out all by himself that he wrote a perpetuum mobile theory. 

I have published three demonstrations to show that current texbook theory always leads to the conclusion that the work done in a volume-neutral deformation is zero <www.elastic-plastic.de/koenemann2008-2.pdf>. (Today I could quote a fourth source.) Why is this so? 

All of classical physics (this side of Einstein & Planck) can be grouped into two very fundamental categories. Every system – a volume in space containing mass, e.g. a kinetic system with n bodies – contains a certain energy U. A process that does not change U is called conservative since U is "conserved", i.e. invariant. Commonly the system is isolated, which means that there is no exchange of mass or energy between system and surrounding across the system boundary. 

The energy conservation law E_kin + E_pot = U = const defines a conservative process. Any process that observes this law will turn E_kin into E_pot and vice versa; the change is the work w. Hence all the work is done within the system. There is no exchange with a surrounding. Classical examples of a conservative process are the revolution of planets about the sun, or diffusion in water at rest at constant T. 

If a process changes the system energy U, it is called non-conservative. It requires that energy fluxes take place between the system and its surrounding across the system boundary. Thus we need a new energy conservation law that takes account of the fluxes; this is the First Law of thermodynamics, dU = dw + dq. Non-conservative processes may be reversible or irreversible. In this case the work is done upon the system. It is commonly known as PdV-work. 

The difference between a conservative and non-conservative process can be given by a simple mathematical condition. 

- If there are no fluxes f, the divergence div f = 0. This is called the Laplace condition. 

- If there are net fluxes f, the divergence div f = phi =/= 0. This is called the Poisson condition. 

phi is the charge, which is a measure of the work done upon the system. Now, is elastic deformation a conservative or a non-conservative process? Clearly work is done upon the system such that it deforms, and energy is stored in the system, the elastic potential. 

But it is well known, taught in every intro class, and found in every textbook, that the trace of the stress tensor tr s = s_11 + s_22 + s_33 = 0 for a volume-constant deformation. This is the Laplace condition. That is, the no-work condition is solidly built into Cauchy's stress theory. 

How could this happen? Very simply: in the mid-18th C when Euler thought about all this, Poisson's condition and the First Law of thermodynamics were still many decades in the future. How could he know that the energy of a system can be a variable? That was understood only after 1845. The only theoretical template Euler knew was Newton's mechanics which is rightfully conservative, but unsuited for any understanding of elasticity. 

Today we would start by asking: is elasticity conservative or non-conservative? Of course the latter. Thus we would turn to thermodynamics, assume a system with a given amount of mass, e.g. one mol, and then study the energetic fluxes between system and surrounding. And we would use div f = phi =/= 0 as a test to see whether we made a mistake – because it must be non-zero. 

If the Gauss divergence theorem is the entrance gate into potential theory, the Laplace and Poisson conditions are its door wings. Potential theory is a wonderful and incredibly powerful theory, the backbone of all of classical physics, and the core of a myriad of methods in applied mathematics. Continuum mechanics has managed to ignore it completely and entirely. 


Koenmann March 22 11  6.37pm

Reply to "Brandon, Mark" 
> I look forward to his discourse #4. I hope that I will learn in 
> that document why reversible elastic deformation is not 
> conservative…. That conclusion seems odd.

Fair question. A conservative process is a process that observes  E_kin + E_pot = U = const
where U is the total energy of the system. That is, a conservative process takes place, for example, within an isolated system that does not interact in any way with a surrounding. Such a process is conservative because the absolute value of U is 'conserved', i.e. unchanged. (I think the terminology is a little quaint, but we have to live with it.) 

A non-conservative process therefore changes U from U_0 to U_1, i.e. it causes a change of the energetic state. This requires flux of energy across the system-surrounding interface. The First Law  dU = dw + dq
says that such fluxes can only be dq, heat flux, or dw, work done upon the system. 

The conservative energy conservation law thus tells us what happens in a system which is not subjected to fluxes. 
The non-conservative energy conservation law instead takes account of the fluxes. 

A non-conservative process can be reversible - if entropy production is zero - or irreversible - if entropy production is non-zero. 

I am grateful for Mark's question because these relations are very, very fundamental, but they are not in the common awareness, they are, if you will, below the everyday radar horizon. Very often people think that 'non-conservative' and 'irreversible' are synonymous, but this is explicitly not the case. Again: a non-conservative process changes the energy of a system such that energy is stored in the system, for example by building up an elastic potential. Whether entropy is
produced is another question. But 'reversible' and conservative' must not, under no condition, be equated. 

Revolution of planets about the sun is a conservative process. Throwing rocks - ignoring friction in air - is conservative. Elasticity is non-conservative-and-reversible. Brittle and plastic
deformation are non-conservative-and-irreversible. 

Schrank March 22 11       8.55pm

if I understood correctly, Dr Koenemann (Discourse 3) criticized that - in case of isochoric, isothermal elastic deformation - Cauchy’s stress tensor implies that zero work is done on the body because the volumetric strain (and hence the trace of the stress tensor) is zero. I have a feeling that this apparent problem stems from the fact that much of classical thermodynamics was developed in the context of gases, and in this context, volume work (the pdV-term) seems to be very important as opposed to deviatoric deformation (think of the steam engine). I admit that I am not well-read when it comes to the history of continuum mechanics and thermodynamics, so I apologize in advance for potential misconceptions. 

But as far as I understand the textbooks as non-physicist, there is no problem with the thermodynamics of elasticity and Cauchy’s stress tensor. The energy functional related to externally applied work in an elastic body is a function of the strain-energy density (in an isothermal process equal to Helmholtz free energy per unit volume) which considers the entire stress and strain tensors and thus also their deviatoric components. So clearly, in this framework, work is done (or energy stored in the body) also if the deformation does not involve volume change and is isothermal. Therefore, Cauchy’s stress tensor can be used to describe reversible non-conservative processes. 


Marshall March 22 11     11.42pm

think another point of confusion is that strain energy density has units of Joules/m^3 which is equivalent to Pascals, so many folks present strain energy density calculations with units of Pa, MPa, etc...


Koenmann March 23 11    7.27pm

Reply to Scott T. Marshall" > An addition to Christoph's well thought out message...
> 
> I think another point of confusion is that strain energy density has 
> units of Joules/m^3 which is equivalent to Pascals, so many folks 
> present strain energy density calculations with units of Pa, MPa, etc...
> 
Continuum mechanics cannot define work for a volume-constant deformation. The trace of the stress tensor is zero for such a deformation, ditto for the strain tensor, thus the term sigma_ii d
epsilon_ii is zero. 

The messy units you mention are in my view a sign that the problem is not well understood. I agree. 


Koenmann March 23 11     7.27pm       

Reply to Christoph Schrank"  
> if I understood correctly, Dr Koenemann (Discourse 3) criticized that - in case of isochoric, isothermal elastic deformation - Cauchy's stress tensor implies that zero work is done on the body because the volumetric strain (and hence the trace of the stress tensor) is zero. I have a feeling that this apparent problem stems from the fact that much of classical thermodynamics was developed in the context of gases, and in this context, volume work (the pdV-term) seems to be very important as opposed to deviatoric deformation (think of the steam engine). I admit that I am not well-read when it comes to the history of continuum mechanics and thermodynamics, so I apologize in advance for potential misconceptions. 

Historically, continuum mechanics is from 1827-1829, thermodynamics came off the ground 1850-1870, and his matters. Your point that gases have formed thinking about thermodynamics is correct, but this had no influence on continuum mechanics which is older. The problem with
continuum mechanics is that it was written  - before people had a clear idea of what a solid is, hence continuum mechanics does not know about bonds; changes of state, hence the theory still has the conceptual structure of Newtonian mechanics;  - before they had a clear understanding of mathematical vector spaces, but continuum mechanics violates its rules massively. 

After 1830 this theory has not changed, despite all the new ideas 1850-1870 in mathematics and physics. This theory is not just maladjusted, it is wrong. 

> But as far as I understand the textbooks as non-physicist, there is no problem with the thermodynamics of elasticity and Cauchy's stress tensor. 

I am afraid there are plenty of problems. Continuum mechanics has the conceptual structure of Newtonian mechanics, but it belongs rightfully into thermodynamics; this means that the two most basic energy conservation laws we know are mixed up. This is a fatal error. 


Koenmann March  23 11    7.27pm    Discourse 4

Page 4: Continuum mechanics is a perpetuum mobile theory (2)
For reasons beyond my knowledge, consideration of physical work has never found much attention in continuum mechanics. But the condition that a volume-constant deformation – according to the current theory – must be zero, is so obvious that I noticed it right in my own intro class. (Of course, my question went unanswered.)

Consider a volume element of spherical shape. This is also a thermodynamic system. By convention work done upon the system is negative, hence compression does negative work, and stretch does positive work. If the system is shortened along x_3 and stretched along x_1 such that the volume remains constant, and the dimensions in x_2 are constant, necessarily the work must cancel. 

This applies to several prominent theoretical outlines in the literature, for example Landau & Lifshitz. This is also the error in Euler's continuity equation d rho/dt + rho dv_i/dx_i = 0. Here rho is the density of the inertial mass, v is the velocity, and x_i are the coordinates. If rho is constant with time, the first term LHS = 0; the rest has the form of the Laplace condition as explained on Page 3. 

In fact, there is even a natural situation where this logic is perfectly correct: in case of a gas – because a gas is incoherent, a volume-constant process does not cost any work. But a gas cannot develop an elastic potential in such a case, it does not reconstitute if it is let go. For a solid the zero work result is nonsense – but how is a gas and a solid distinguished in a theory of elasticity and stress that never mentions bonds? The problem in Euler's continuity equation is the continuity of mass distribution, not the continuity of bonds – which is the defining property of a solid. 

So is it clear now just how hopelessly obsolete the Euler-Cauchy theory really is? 

But I am not done yet. Shortening and stretching must be done by normal forces. Where is the contribution of the shear forces? Do they or don't they contribute to the work done in a deformation? 

It turns out that the Euler-Cauchy theory is highly equivocal about this point, but in the end no work is done. The question cannot really be asked because the Euler-Cauchy theory never explains where the forces come from, and how they are spatially arranged. (A modern vector field theory is much more specific here.) It is just assumed that the sum of the shear forces is zero, because it must be zero in equilibrium. Thus it seems that the shear work cancels too. 

If the stress tensor is written out in a full 3´3 matrix, the diagonal terms are normal components, and the off-diagonal components are then said to be the shear components. BUT a symmetric tensor can always be oriented such that the off-diagonal terms are zero. Hence there are no shear components in this orientation – or did I misunderstand something? And if so, why doesn't anybody dare address these questions? 

Let's summarize the last two pages: the Euler-Cauchy theory of stress and deformation always produces a zero result for the work done in a volume-constant elastic deformation; it is unspecific about if and how shear forces contribute to the work done, but probably they don't; it does not make a difference between a gas and a solid because it does not consider the existence of bonds – which complies with the properties of a gas only, but not with those of a solid.

Cooke March 23 11           10.22pm

Distortional strain is physical work without volume change. The spherical element example presented by Koenemann is the case of pure shear with non-zero distortional work. While Koenemann contends that the tensional work offsets the compressional work on the sphere, the strains also need to be considered. The compressional stress (negative) produces a contraction strain (negative). Mechanical work is 0.5 * stress * strain so that in this zero volume loss example, the tensile work and compressional work are equal and both positive leading to a non zero physical work. 

Through this spherical element thought experiment we can appreciate that the full strain energy density formulation includes both dilatational and distortional components. This is well explained in Jaeger and Cook's classic rock mechanics textbook and Timoshenko and Goodier's classic continuum mechanics textbook (among many others). 

Physical work has found considerable attention within earthquake mechanics as seismic moment is based on physical work (see cogent derivation in Chris Scholz' fault mechanics book). The entire field of fracture mechanics is based on energetic formulations (e.g. Energy release rate and J-integrals). To say that physical work hasn't found much attention in continuum mechanics is overly provocative in my opinion.

Rutter March 24 11              6.25am

Falk Koenemann seeks to confuse by means of an irrelevant thought experiment. Of course, we all now that ‘real’ solid and viscous materials have bonds but continuum mechanics does not need to consider them. A gas can support pressure only because it is contained by an equal all-round pressure and the shape of the container is irrelevant, so no work is done in changing the shape of the container at constant pressure. A gas needs only one physical property to explain its behaviour at constant pressure, its compressibility.
Falk suggests that a gas and a solid are comparable and suggests that no work is done on a solid during an isovolumetric deformation (presumably including elastic deformations). But the simplest isotropic solid requires two elastic constants to describe its behaviour, and more for progressively more anisotropic materials. Of course, crystalline materials are anisotropic on account of how bonds are arranged, but continuum mechanics does not need to be concerned with that at all. Imagine a solid with a Poisson ratio of 0.5. It must deform elastically at constant volume. If it is loaded axisymmetrically but with the orthogonal principal stresses zero, the greatest principal stress will do work but in the radial direction the expansion takes place against zero load, so no work is done. The result is that the solid deforms at constant volume but overall mechanical work is done (which you get back when the load is removed). A more general material with Poisson ratio less than 0.5 undergoes volume change but a non-isotropic deformation still does mechanical work on it.
Falk seems to think that by changing a reference frame the shear stresses in a solid disappear. They don’t. They are still there but in different orientations that do not appear in the array when referred to the principal frame. Their existence can be demonstrated in suitably designed experiments. Falk’s assertion that ‘the stress tensor does not exist’ is unhelpful and misleading. It is a concept that continues to serve us well in the everyday world. As Janos Urai has requested, if Falk wants to argue that there is something wrong with continuum mechanics, he must point it out with examples that make sense and provide the experimental proof of his assertions, or indicate where existing theory fails and leads to blatantly wrong results.
Stuewe March 24 11             7.25am

Falk shows us an observation in rocks that cannot be explained by continuum mechanics or designs an experiment for us that illustrates to use of his thinking for the mere mortal. I also feel that we can ask Falk for that experiment or observation to be simple enough to be understandable to all Earth Scientists with a PhD in Tectonics 

Koenmann March 25 11     3.08pm        Discourse 5

Page 5: Conceptual contrasts between Newtonian mechanics and thermodynamics
When I was in my first graduate year, I had thermodynamics in the morning and stress & deformation in the afternoon. The two just would not match at all, when clearly they should match. Here is the reason: to this day, the theory of elasticity has a conservative structure. NM stands for Newtonian mechanics, TD for thermodynamic concepts. Irreversible processes are not considered here. 

Nature of mass:

NM: the mass is the inertial mass, measured in [kg].

TD: the mass is the thermodynamic mass which is counted in atoms, and dimensionless. (The mol is a number, 6 ´ 10^23.) 
Nature of work: 

NM: work is done against inertia. It is acceleration work, the change of E_kin and E_pot the sum of which, the total energy of the system U, is always constant. It is work done within a system.

TD: work is done by the surrounding upon a system and vice versa such that its energy U_0 changes to U_1. It is commonly known as PdV-work. (This is for isotropic boundary conditions.) 

It follows that Newtonian work and thermodynamic work cannot be summed. 

Nature of force: 

NM: the definition of a force is the equation of motion f = ma where m is the inertial mass. It is not possible to define force and mass separately. f is a discrete vector, it cannot be derived. 

TD: Forces are field forces f = dU/dx, and derived from the electromagnetic potentials U of the atoms in the system such that the magnitude of the potential is proportional to mass (in atoms, not in kg). 

Time as a parameter: 

NM: Time is an indispensable parameter because work is acceleration work.

TD: Time is not a parameter in thermodynamics, there is no time term in PV = nRT; a reversible thermodynamic process (e.g. elastically stretching a spring) is time-independent. 

Path-independence:

NM: work depends only on the starting point and the end point of a path. Newtonian work is path-independent in Euclidean space, or the common geographic 3D-space. 

TD: work is path-independent in energy space, or PV-space, of which the common 3D-space is only a subspace. A term whose magnitude only depends on the starting point and the end point of a path, is called a state function. 
Purpose of theory: 

NM: the intent is to understand the physics of discrete bodies in freespace. A discrete body is a body of mass which can be enveloped by a closed surface S such that A nowhere runs through mass. 

TD: designed to understand the physics of mass distributions which may or may not be solidly bonded with their surrounding. Continuity of mass distribution is a precondition, so S must run through mass. 

Governing equation: 

NM: the equation of motion f = ma; the total energy of the system is invariant. 

TD: the First Law dU = dw + dq and the equation of state PV = nRT. 

Equilibrium condition: 

NM: two forces balance if they are equal in magnitude and opposite in direction. Disequilibrium reaction: acceleration of the body in some particular direction. 

TD: the forces exerted by the system at the surrounding and those exerted by the surrounding at the system balance. Disequilibrium reaction: reconstitution into the lowest energy state. 
Energy conservation law: 

NM: E_kin + E_pot = U = const.

TD: dU = dw + dq. 
That is, NM and TD represent mutually exclusive realms in physics. Mixing them – which is routinely done in material science – produces a hilarious mix of apples and oranges. 

Koenemann March 25 11 3.08pm

Michele Cooke: 

The spherical element example presented by Koenemann is the case of pure shear with non-zero distortional work. While Koenemann contends that the tensional work offsets the compressional work on the sphere, the strains also need to be considered. The compressional stress (negative) produces a contraction strain (negative). Mechanical work is 0.5 * stress * strain so that in this zero volume loss example, the tensile work and compressional work are equal and both positive leading to a non zero physical work.
If contractional work is negative, extensional work must be positive. If you do it under isotropic boundary conditions – a gas or a solid – you shift in PV space to the left or right, so there must be two signs for the work. 

Your comment shows another flaw in the theory: the improper cause-effect relation. In thermodynamics you have the material properties (the EOS), the cause (Delta P), and the work equation then gives you the effect – Delta V, and its sign comes from the cause, not from an extra theory. In principle it should work the same way in anisotropic loading, but that's not the case. Look into Malvern: there is one chapter on stress, then you turn the page and find everything about strain, but how you get from A to B is not at all clear. In effect – this is Cauchy's legacy – you have two independent theories side-by-side, which are then somehow glued together. Say, you know the sign of stress in a particular direction – compressive – so you also know the sign of the effect – shortening – and then you multiply them and always end up positive. That can't be right. 

The theories of stress and strain cannot relate to one another: Stress is not a concept in Euclidean space whereas strain is. I think that a proper theory of deformation does not need a strain theory. Thermodynamics doesn't. My theory doesn't, but it gives you the distortion nonetheless. – Besides, the strain concept has its own weakness, strain is not a state function (cf. page 7). 

To say that physical work hasn't found much attention in continuum mechanics is overly provocative in my opinion.
I stand by my remark. I have read books on fracture mechanics. I am not saying that these authors are sloppy, I just say that there are too many non-sequiturs in the theory, your trouble with the sign of work is a telling example. A phenomenological theory may work well in practice even if it is theoretically ill-founded. The flat-earth theory works perfectly at the scale of your office – even at much larger scale, say your campus, but that still doesn't make it right. 

-----------------------------------------

Ernie Rutter

‘Real’ solid and viscous materials have bonds but continuum mechanics does not need to consider them.
Just so? That's not enough. Bonds are forces which interact with the external forces. If bonds are not considered the equilibrium equation is incomplete. It's that simple. Deformation work is work done upon bond lengths. If you leave out bonds, what do you do work upon? In thermodynamics the case is clear: if there are bonds, the internal pressure (dU/dV)_T is quite high, that's the term the surrounding interacts with. In a gas it is zero. 

Of course, crystalline materials are anisotropic on account of how bonds are arranged, but continuum mechanics does not need to be concerned with that at all. Imagine a solid with a Poisson ratio of 0.5. It must deform elastically at constant volume. If it is loaded axisymmetrically but with the orthogonal principal stresses zero, the greatest principal stress will do work but in the radial direction the expansion takes place against zero load, so no work is done. The result is that the solid deforms at constant volume but overall mechanical work is done (which you get back when the load is removed). A more general material with Poisson ratio less than 0.5 undergoes volume change but a non-isotropic deformation still does mechanical work on it.
Not so. The material contracts if the boundary conditions permit it. In this example you imply those of a wire in freespace, and then the Poisson ratio may work, but it is phenomenological. If the same wire is encased in some rigid material it cannot attenuate, no matter what Poisson's ratio says. 

My point here is that Poisson's ratio is a fudge factor that is numerically not wrong under the boundary condition for which it was meant – a wire in freespace. But if I see questions in the literature what Poisson's ratio might be for the material in the lower mantle – boy, the nearest free surface is 3000km away! Rather, a purely phenomenological theory was developed for wires in freespace, at a time when it was far too early to properly assess the physical problem as such, and then it was transposed a little thoughtless to the conditions of an infinitely extended continuum, and suddenly you have terms in your theory which make sense only at the surface. 

The cause of attenuation is not a material property called Poisson's ratio, but the law of least work: if you stretch the wire and prevent the attenuation, the work done is far higher because you get a volume change. Therefore as you do work on the wire in X, the wire does work upon the surrounding in Y and Z. You can even measure this saved work: stretch the wire in X and let it attenuate, and then pull the lateral surfaces out again until there is no change of length in Y and Z. I think that a proper theory of deformation should predict the effect described by Poisson's ratio, we do not need this fudge factor. – I found that there are three independent sets of boundary conditions: (1) the material properties, (2) the force configuration that acts upon the thermodynamic system, (3) the spatial extent of the bonded continuum that contains the system, i.e. the shape of the sample. If the old theory started by considering wires in freespace, I think we must go precisely the opposite way: consider a system in an infinite bonded continuum, and then find out what happens if you reach a free surface. 

Falk’s assertion that ‘the stress tensor does not exist’ is unhelpful and misleading. It is a concept that continues to serve us well in the everyday world. 
"Proof of existence" in mathematics means proof that a concept, postulate or theorem is compatible with common logic. I have shown that Cauchy's tensor is not in line with common logic. You say you happen to like the concept. But that's not a mathematical or physical argument. – Excuse me, Ernie, we have had this very point in a direct conversation before. Whether an idea comes handy or looks good enough for government work is not a criterium, or else we would still believe in ether or phlogiston. I am doing my best to get us out of this phenomenological mess. You seem to think "If I can measure it, it is there". I think that you don't know what you are measuring. It is the concepts that guide you, and all I am saying is that we need new concepts. My claim that the Cauchy stress is incompatible with standard physical logic (that it "does not exist") is unchallenged. 

The truth is – and this applies to the great majority of my colleagues – that you (plural) have probably never really heard about potential theory because it is not taught in continuum mechanics classes. The reason is simple: continuum mechanics is historically older, and stands massively in contrast to it, it has ignored it. But potential theory is right. If you are entirely insensitive to its rules, that does not make the rules irrelevant, but it means that there is something new to learn. I sincerely hope that I am not understood as being arrogant now, I am deadly serious, and urging. 

If Falk wants to argue that there is something wrong with continuum mechanics, he must point it out with examples that make sense and provide the experimental proof of his assertions, or indicate where existing theory fails and leads to blatantly wrong results.
Simple shear provides a plethora of examples, not just in mylonites. I make the claim that I have found the reason for turbulence in viscous flow, S-C-fabric, joint orientation etc. It is my peer's job to look at the results. – Since 1997 I have been to ca. 25 conferences. I never get the mike, always a poster, and nobody comes to see it. Asking others to come see my poster was the best way to make sure they would not come. Exception: I had the mike at the TSG meeting in Manchester 13 years ago which Ernie chaired; but then a jaded queen remarked that what I do is not structural geology, and that was the entire discussion. If there is no poster session it has already happened that I was told by phone that my presence at the conference is unwanted (in Germany). When I tried to say something in Liverpool TSG 2009 when the discussion was opened for general topics, I was yelled down by the session chairman (you know who). All this amounts to a suffocating excommunication. The noise right now is the result. Altogether, I have been shunned by my peers like a black Jewish homosexual child-raping ex-convict who is out on parole, the contempt is physically sensible. Notable exceptions are few, in particular Ernie Rutter and Brian Evans who have always treated me with genuine decency and not a trace of condescension. This is the right place to express my thoroughly heartfelt gratitude, you don't know what an exception you are. 

I have plenty of testable predictions, what I need is an audience willing to pay attention. I am grateful for the discussion here. And whoever pays the ticket – I have a nice Powerpoint talk to offer. Judge my work after you have seen it. 

-----------------------------------

Kurt Stüwe

Theories are never RIGHT or WRONG. Theories are only CONSISTENT or INCONSISTENT with observations and theories are only USEFUL or NOT USEFUL. In order to be useful, a theory must explain observations in nature in a simplified way so that the student of the problem feels he/she understands something he/she has observed.
Sorry, theories can be terribly wrong if their mathematical-physical structure is not in accordance with standard physics. Mixing up Newtonian mechanics and thermodynamics is such a non-accordance. What you say here is a free ticket to unlimited phenomenology, which is a sure way into never-never-land. 

Your father was a kind man. But statements such as the above are an attempt to avoid theoretical discussion altogether. 

------------------------------------

Mark Fisher

Thank you to Rob Twiss for reminding everyone that this debate with Falk Koenemann has already taken place. 

Rob Twiss hasn't said anything yet. He only said he is not going to say anything, and that he once said something 10 years ago, which was also just that he is not going to say anything. In fact he is not even talking to me, only to everyone else. The truth is, Rob Twiss is in trouble. There is something you cannot know: I was his student. I got the basics from him in 1980-82. When I tentatively formulated my first independent thoughts years later he instantly took refuge into silence. Now, 22 years later, he finds to his dismay that the thing he tried to quench is still at his door step. In the meantime he has written two textbooks and grown into the senior authority in theoretical matters in structural geology and feels that everyone is waiting for him to say something – not me, I have given up on him, but the rest of you. Let's see what happens. 
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Page 6: Proper relation of Newtonian mechanics to thermodynamics

Keeping apples and oranges apart sounds trivial, except if people are unaware of the difference. This sounds sassy, but it isn't funny at all. In <www.elastic-plastic.de/koenemann2008-2.pdf> I have published three textbook examples where the First Law of thermodynamics is turned upside-down. Here I give a fourth one: Holzapfel, Nonlinear solid mechanics, Wiley, 2000. (Like all other books known to me, it never mentions bonds.)

On p.164, eqn.4.122 the First Law dU = dw + dq, the energy conservation law for non-conservative processes, is implied in integrated form, U = w + q, and then given as time derivative dU/dt = dw/dt + dq/dt. This is not wrong, any thermodynamic process is a historical process, so the time derivative is legitimate. But why, if reversible thermodynamic processes are time-independent, including elasticity?

On p.153, eqn.4.85 the rate of external work is given as the sum of the rate of kinetic energy plus rate of internal work, d E_kin/dt + d(sigma_iI epsilon_ii)/dt = dw/dt. All terms in this equation are derived from conservative, Newtonian concepts, i.e. the conservative energy conservation law E_kin + E_pot = const is implied. (Sorry for the obtuse terminology, these are the terms we must use.)

Then dw/dt of eqn.4.122, a thermodynamic term, is plugged into the conservative eqn.4.85. Literally, the First Law of thermodynamics is thus interpreted as subordinate to the conservative energy conservation law, in effect making the First Law conservative. What's left is an empty name, but the substance, the very nature of the First Law is gone.

Again, note that both sigma_iI and epsilon_ii (sum over i) are zero for a volume-neutral deformation, thus the work is zero. - Again, why is the First Law above given as a time-derivative? It is an attempt to make the First Law nominally compatible with Newton's equation of motion f = ma which cannot exist without time dependence, but it is the only force definition known in continuum mechanics. It is an unmistakable tracer to the conservative roots of continuum mechanics, and a reference to E_kin. It is characteristic for continuum mechanics that the obvious alternative, f = dU/dx, has never been used (with one single exception known to me, by Helmholtz 1902, but this book is forgotten.)

When I searched for a better relation between E_kin + E_pot = const and dU = dw + dq, I thought of atoms jetting around in a thermodynamic system, solid or gaseous, observing E_kin + E_pot = const and Newton's mechanics; their kinetic energy is mv^2, where the velocity v is an average term. I interpreted E_pot as an expression that stands for bonds in solids, so E_pot became fr where f is a force, and r is a bond length. Their sum is then the total energy U of the system in the unloaded state, say U = PV, such that the conservative energy conservation law turns into

mv^2 + fr = PV

where the first term LHS is the heat (atomic motions only), and the second term LHS is the bonds. But this law is in effect an equation of state, and accessible to the First Law.

That was in 1986. Nobody liked it. In 2006 I found my law in a standard thermodynamics textbook – it is known as the virial law of Rudolf Clausius (<www.elastic-plastic.de/clausius1870.pdf> for Clausius' original paper in English, or look up the law in Wikipedia). Gloria Victoria!

A couple things now fall into place. Whatever work is done by the atoms upon one another, bumping around and following Newton's laws, is all within the system and interesting only for the nature of heat. BUT the equation of motion f = ma and the entire rest of the conservative Newtonian toolbox are now used up. Whenever work is done upon the system to cause a change of state, such as an elastic deformation, the cause of the deformation is outside the system, and we must use the First Law.

An one-line intro to my deformation theory is now possible: for practical purposes we can ignore mv^2, we are left with fr = PV or f_int r = f_ext r (which is the thermodynamic equilibrium condition in vector form) where f_int is a force exerted by the system at the surrounding, f_ext is the opposite, and r is a typical distance, be it a bond length or the radius of the thermodynamic system. Furthermore, f_int r = E_pot, hence f can be understood as f = dU/dx, a force field derived from a potential U – which can be done only from a potential energy term, not from kinetic energy. Now everything is wide open. We have a system of finite size, which has a radius of unit length in the unloaded state when the forces are zero. If the external forces are non-zero, they do work on the radius by changing its length – an one-dimensional equivalent to PdV-work. It all pans out.

