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Waldron March 26 11 5.51pm

I would like to ask a question, that has been raised in my head by some of Dr. Koenemann's comments. Like many members, I work in general field-based structural geology, and am not an expert in continuum mechanics. However, I do teach the basics of stress and strain in my undergraduate and graduate classes, typically to students with even less background in physics and mathematics than mine. Like most of us who teach this stuff, I take my students through the hypothetical vanishingly small cubic element of a solid under stress, and represent the three components of stress (or more properly traction) on each surface so as to fill out the 9 components of the stress tensor.

Then comes the part that always leaves me with nagging doubts. There is an argument in all the texts that the shear stresses sigma-x-y and sigma-y-x are identical, based on the case that there is no net moment about the z axis in this vanishingly small cube. When applied to all the off-diagonal elements, this leads to a symmetrical stress tensor with 6 independent terms, in contrast to the asymmetric deformation gradient tensor with 9 terms. I am uncomfortable with this contrast, which seems counter-intuitive. If deformation is driven by stress, and the stress tensor only controls the six terms that describe distortion (or distortion rate) then how is the rotational part of deformation controlled? I realize that rotation can be constrained by setting appropriate boundary conditions, but my discomfort is that that vanishingly small cube doesn't 'know' about the boundary conditions of the system in which it sits, so what controls its rotation if not the state of stress? So I always end my lecture with the feeling that the argument is sleight of hand - I have used phrases like 'arguments beyond the scope of this course lead to...', without feeling that I actually have a proper grasp of those arguments.

This may be something that can be very simply answered, and that I simply missed out on in my own education. However, Dr. Koenemann's discourses raised the idea that we should be able to explain stress-strain relationships in terms of forces that act along bonds between atoms, not infinite imaginary surfaces within continua, so I am tempted to wonder whether there are elements of his argument that might lead to a resolution of my question, perhaps by including a rotational element into the description of stress. If anyone has any suggestions or explanations that help to make this make sense, and help me make sense of this to my students, it would be most welcome.

Marshall March 26 7.35pm

---------------------------------------------------------------------
"Then comes the part that always leaves me with nagging doubts. There is an argument in all the texts that the shear stresses sigma-x-y and sigma-y-x are identical, based on the case that there is no net moment 
about the z axis in this vanishingly small cube. When applied to all the off-diagonal elements, this leads to a symmetrical stress tensor with 6 independent terms, in contrast to the asymmetric deformation gradient tensor with 9 terms. I am uncomfortable with this contrast, which seems counter-intuitive"
---------------------------------------------------------------------

I, too, struggled with this because I was always taught that stress causes strain, which in turn causes displacements. Whether this is true or not makes no difference to me because they are all related 
mathematically. Also, stress and strain cannot be directly measured; only displacements can. So, I think if one looks at this from the perspective of what can be measured (displacements) and then discuss how 
the stress tensor comes from measurements of displacements things may make a bit more sense.

The displacement gradient tensor (which can be directly measured) can have 9 independent components while the stress/strain tensor only has 6. This is because the displacement gradient tensor is the sum of the 
strain tensor and the rotation tensor. The strain tensor is symmetric like the stress tensor and the rotation tensor is antisymmetric. This is nicely described in Jaeger, Cook, and Zimmerman's Rock Mechanics text 
(pg. 43-54). In the case of equilibrium, the rotation tensor is zero.

Conceptually speaking, a rigid block rotation does not cause fractures, faults, or bodies of rock that are completely contained within a block to be strained because rigid block rotations, by definition, do not 
cause strain...i.e. rotations do not change the size/shape of a body.

My understanding is that the stress and strain tensors must be symmetrical because asymmetry in the stress/strain tensors would imply that (infinitesimally) small parts of the body are rotating while others 
are not. This means that the body does not satisfy the definition of a continuum because the displacements would not be continuous throughout

Jiang March 26 8.32pm

First, to say that deformation is driven by stress is incorrect, or at least, incomplete. Let's limit ourselves to infinitesimal elastic deformation first. One can say the strain is driven by the stress (through
the Hooke's law). Or equivalently, the other way around (left side equal toright side of the Hooke's law). But deformation must be defined by the complete displacement field, of which strain is only the symmetrical part. The antisymmetric part of the displacement field is the rotation. Now to answer your question, what determines the displacement field? It is the combination of mechanical laws (balance of linear momentum, angular momentum), stress-strain relation, compatibility, and the boundary
conditions. How does the vanishingly small cube 'know' about the boundary conditions of the system in which it sits? It is through compatibility requirement. The possible displacement field for a continuous body deformation must make all parts compatible.

The about explanation applies to the deformation of any continuous body. For a viscous body, just replace the displacement field by the velocity field.

When one moves from infinitesimal deformation to accumulative deformation, one simply deals with the time integration of the displacement/velocity
field.


Twiss March 27 3.51am

The short answer is that the local torques do NOT have to vanish, and if they do not, we must include the presence of a couple-stress field in addition to the classical stress field, and in that case, the stress tensor does NOT have to be symmetric. But if we want to consider this case, this implies that we want to consider the effects that the substructure of the material has on its mechanical behavior. As an example, we might want to consider the effects of the substructure of sand (i.e. its granular nature) on the way in which it flows. 

Here is a longer answer (for those not interested, hit the delete button NOW!!!): 


In continuum mechanics, we deal with field quantities (e.g. vector fields like displacement or velocity; tensor fields like displacement gradients, stress, and strain) that have a defined value at every point in space. Clearly this does not describe real materials, because all materials become discontinuous at some scale (e.g. grain-size scale, molecular scale). Thus one has to understand that a field quantity (such as displacement) at any point in a continuum really is an average of all the real displacements in the real material taken over a local but finite volume surrounding that point. The size of the volume over which the average is taken must be large relative to the size of the discontinuities that one wishes to ignore and thus average out. Field quantities at neighboring points in the idealized continuum can thus be understood to be averages of the actual quantity taken over overlapping local volumes. In this way, one can easily understand how a continuum field can be defined to represent a discontinuous material, and how random fluctuations of, for example, motion in the real material are averaged out so that the motion can be represented as a smooth continuum field. 

In using the moment of momentum to derive the stress at a point, we typically argue that the moment arm goes to zero for a point in the continuum. What we really mean, however, is that when we average the moment of momentum over a local finite volume around the point, it averages zero, so there is no net torque on the local finite volumes. This, then, is what the symmetry of the stress tensor represents. 

From this point of view, it then becomes easy to envision a situation in which the average of the moment of momentum over a local volume does NOT go to zero. Consider, for example, a material that has a microstructure, like grains in sand. If we are interested in the mechanical effects of this microstructure, we must account for the fact that at the scale of the grains, the local torques do not go to zero because the sand grains have finite size and the moment arms cannot be assumed to vanish. The torques on the grains, when averaged over the local volumes to define a continuum field, lead to the definition of a couple stress field, which exists in addition to the classical stress field. Both of these fields are represented by tensors at every point in the continuum. Under these circumstances, the balance of moment of momentum requires a balance between the antisymmetric part of the classical stress tensor and the couple stresses. Thus the asymmetric part of the stress tensor does not go to zero, and the stress tensor therefore becomes an asymmetric tensor. These quantities are derived by Eringen in his papers on micropolar continuum theory, and references can be found in my papers referenced below. 

With regard to the description of the deformation, if the material has with no microstructure that we want to take into account, the antisymmetric part of the displacement gradient tensor represents a rotation at a point that is the average rotation of material lines of all orientations through the point. For a homogeneous deformation of a body, this means that the average of the rotations over a local volume, which defines the continuum rotation at a point, is the same as the rotation for the whole homogeneous deformation of the body (see Fig.1a, b in Twiss, Souter, and Unruh; 1993. The effect of block rotations on the global seismic moment tensor and the patterns of seismic P and T axes; Jour. Geophys. Res. 98(B1): 645-674). 

If we want to consider the effect that microstructure in a material has on the deformation, we can again think of the flow of loose sand, for example. The flow of the sand as a whole (the 'macrodeformation') can be described by the flow of a continuum, which represents the motion of the centroids of the sand grains, where again, the classical continuum field value for the displacement gradient at a point in space is the average gradient of all the centroid displacements across a local volume that is large with respect to the size of the grains. In this case, however, there are clearly small volumes (the sand grains) each of which is capable of a separate rotation about its own centroid, regardless of how the centroid moves. This rotation is referred to as the 'microrotation', and this rotation is independent of the motion of the centroid and thus independent of the 'macrodeformation'. If one averages the real microrotations of the sand grains over a local volume that is large with respect to the sand grains, that average can be ascribed to a point at the mass centroid of the averaging volume, but this rotation is not the same as the 'macrorotation' at the same point, even for a homogeneous deformation (see Fig. 1c in Twiss, Souter, and Unruh, 1993). In this way one can construct a continuum description of a material in which the 'microrotation' at a point (the average rotation of the sand grains) does not go to zero. 

In constructing constitutive equations, then, one needs additional equations over and above the classical ones, that relate the couple stresses at a point in the continuum to the microrotations at that point. 

This approach is the basis for the continuum theories of materials with microstructure (E. and F. Cosserat I believe were the first; Green and also Eringen have their own formulations, and probably others as well). I have been using Eringen's continuum 'micropolar' theory to study the brittle deformation of the earth's crust. I have assumed that fault blocks can undergo independent rotations about their centroids in the brittlely deforming 'continuum' much like sand grains do in a flowing sand. These rotations become important if the measurements one makes on this brittle deformation are on a scale comparable to the fault blocks themselves, because then the independent rotation of the fault blocks has an effect on the measurements one makes. In particular, if one measures slickenlines on fault surfaces, or first motions defined by seismicity, these quantities should be affected by the rotations of the blocks whose sides are the faults. (We find evidence that favors this hypothesis, but independent tests are very difficult to do, and results are so far not entirely unambiguous. See Twiss, 2009 (ref. below) for a reivew of these results.) 

These same arguments also lead to the definition of an antisymmetric part of the geometric moment tensor (related to the seismic moment tensor), which describes the deformational characteristics of seismic events and seismic flow of the crust. An illustration of how the continuum fields for 'macrodeformation' and for 'microrotation' can be defined by the averaging over local volumes around each continuum 'point' can be found in: 

Twiss, R. J. 2009. An Asymmetric Micropolar Moment Tensor Derived from a Discrete-Block Model for a Rotating Granular Substructure. Bulletin of the Seismological Society of America 99(2B): 1103-1131. 

In all these continuum theories, of course, one has to distinguish between the fundamental balance laws, or conservation laws, of physics (conservation of mass, momentum, moment of momentum, and energy, and the production of entropy) and the constitutive equations that relate the strains to the stresses. The constitutive equations are purely phenomenological and not at all fundamental. In the constitutive equations, the effect on the continuum scale of the bonds in the material is represented by the material constants — for example, averaging strengths of bonds in an elastic solid over local volumes gives rise to the continuum elastic moduli (e.g. Young's modulus and shear modulus for a mechanically isotropic elastic material) that have values at every point in space, where each point is located at the centroid of a local averaging volume.

Jiang March 27 11 9.19am

In applying continuum mechanics, we assume that the continuum assumption is valid for the problem. One may refer to many textbooks for this assumption. Where this assumption is not valid, other formulations are necessary. But John Waldron's question still must and can be answered in the context of classic continuum mechanics.

Imagine a simple case where a Newtonian fluid is constrained between two parallel rigid plates moving parallel to each other. The velocity field in the fluid is a perfect progressive simple shear and is everywhere
monoclinic. But the stress tensor is everywhere orthorhombic. Where does this unparallelism arise? I think the answer is that the velocity field is not just driven by stress (the "deformation driven by stress" thinking). It must satisfy the compatibility requirement and the boundary conditions as well.

As we know, a complete set of equations for a continuum mechanics problem includes: mechanic laws which ensure stress equilibrium and require that the stress tensor be symmetric, constitutive equations (relating stress and strain and strain rate etc.), kinematics (strain and  compatibility etc.), and the boundary conditions.

Twiss March 27 1.32am

For a discussion that amplifies Dazhi's points, see Twiss & Moores, Structural Geology, 2nd Ed., Section 18.1 (p.544-546). We can consider the boundary conditions as defining the 'cause' of the mechanical process because these are the conditions that are externally imposed on the deforming body. For a mechanically isotropic body, the symmetry principle [see Twiss & Moores, Section 17.8-ii, p.537] shows that if the stress is the cause of a deformation (stress boundary conditions), the resulting deformation can never have the low monoclinic symmetry of a simple shear. Only if velocity boundary conditions are applied can a simple shear result [Twiss & Moores, Section 17.8-iv (p.539)].

I might add that it is important to understand the distinction between a real material and the continuum model of that material. The continuum formulation of deformation of a material is simply a mathematical idealization, a model, of the physical system, and should not be confused with the actual physical system itself. For the mathematical idealization, we can imagine taking a limit as we shrink a cube or a tetrahedron to an infinitesimal point. For a real material, however, such a process becomes meaningless as the size of the volume decreases because of the inherent discontinuities and heterogeneities in a real material. Thus we must always keep in mind what the correspondence is between an infinitesimal point in a mathematically idealized continuum and what that point represents in the real material. 

In particular, the value of a field quantity such as force at a point in a continuum is a mathematical idealization that is meant to represent an average of all real forces in the real material over a local volume around that point. This is the basic approach of statistical mechanics. When, in the mathematical idealization, we allow a volume to shrink to zero so that all moment arms vanish and torques become zero, we are using a mathematically convenient technique to express the physical situation that within a small local volume around a point in space, whatever torques there may be will average out to zero.

Thus it is best to keep in mind the statistical mechanical basis for the relationship between a continuum model and what it is designed to represent in the real world. If the continuum model does not represent the real world adequately, we are free to use a different model. For example, a micropolar continuum model could provide a better representation of the behavior of a granular material than the classical continuum model.


Jiang March 27 3.58pm

But I don't understand why it would
make a difference in principle if the boundary condition is a stress one. For the Newtonian fluid between parallel rigid plates example, one can as well view it as a constant traction boundary condition problem: the shear stress at the fluid-plate interface is kept constant. Nothing would change.

It is all the requirements (mechanic, kinematic, rheology, and boundary conditions) that the velocity field must satisfy that make it generally asymmetric. At a point far away from the boundaries, kinematic compatibility requirement is perhaps more important than the boundary constraints.

Waldron March 27 4.25pm

In response to Scott and Dhazi - yes, point taken, making kinematic quantities the independent variables and dynamic quantities the dependent variables certainly avoids the logical problem, and is a better way of thinking about deformation anyway. Pages 544 - 546 in Twiss & Moores are an elegant statement of this. To encourage this type of thinking, and to discourage the tendency of students (encouraged by some first-year textbooks) to jump to dynamic conclusions, I always teach strain first and stress second. 

Nonetheless, this does not altogether get round my problem. First, however much we think about strain as the cause and stress the effect, when dealing with brittle fracture it seems that we inevitably have to think about stress as a cause and failure as its consequence at some point. Yes, I know that once fracture occurs we are not dealing with a continuum any more, but the fact of the matter is that all our discussion of fracture criteria is bound up with stress concepts from continuum mechanics so I don't think it can be avoided entirely. Second, and more troubling to me, is that if a kinematic system (displacement or velocity gradient) described by 9 independent quantities is leading to a field of forces that can be described completely by a symmetric tensor of 6 independent components, is their any dynamic counterpart of the antisymmetric part of the tensor that describes the displacement field? I find it odd that there would be no equivalent at all. That would mean, Dazhi, that a small element in the middle of your layer, undergoing viscous simple shear between two plates, is subject to exactly the same force distribution as an element in the middle of a cylinder undergoing progressive coaxial deformation. The differences between the behaviour of the two elements would be determined only through the boundary conditions and the requirements of strain compatibility etc that you allude to. This is fine, but those requirements are much less elegantly stipulated than the constitutive laws that relate stress to distortion.

So, Robert Twiss's answer has set me thinking that there might be more to force distribution than the orthorhombic stress tensor. (However, I haven't read the references yet!) The argument that there is an antisymmetric component to stress is interesting, and new (to me). It set me thinking about the relationship of forces to planes on the one hand, and to lines on the other. In dealing with forces acting on the surfaces of our vanishingly small element, if we dealt with just force, we would end up arguing that the force on the surface vanished to zero as the size of the element under consideration was reduced to zero. To avoid this, we can define traction dF/dA which does not vanish to zero. The argument about moments seems to me to have some analogies. As we reduce the size of the cube to vanishingly small, the moment vanishes. Is there some non-vanishing quantity (dM/dr? where r is the length of the lever arm) which expresses the relationship between the forces acting (even within a continuum?) about a line, which could be related in a simple way to the kinematic vorticity? My thinking would be that these 'torque densities' (I have no idea if there is a word for this) would be described by an antisymmetric tensor. There then might be a pleasing symmetry between the strain and rotation tensors in the kinematic world, and the stress and torque-related tensors in the dynamic world. 


Jiang March 27 5.18pm

My point is not really about what to consider as independent variables. Replacing y=f(x) by x=inverse_f(y) does not get you any further. Rather, my point is that you should not just requre the velocity field to satisfy the stress ALONE. The permissible velocity field must satisfy: 1) mechanics (in fact this is why the stress tensor must be symmetric, a requirement of the balance of angular momentum), 2) rheology, 3) the kinematics (strain, strain ates, vorticity), and 4) boundary conditions. You are still thinking that
velocity field must satisfy stress alone.


Waldron March 27 11 5.57pm

I do see how the rotational part of the deformation can be directly related to the avoidance of misfits, so in principle this can be directly related to the avoidance of torque that I was seeking to rationalize. 


Twiss March 27 11 6.11pm

It makes a difference because the stress is a symmetric tensor that has at least orthorhombic symmetry. Thus if you try to apply a shear stress to a surface of the rigid plate, automatically the symmetric shear stress is generated, because the stress tensor is symmetric. Thus in reality, although one may think one is only applying a shear stress to one surface, one is actually applying symmetric shear stresses to a conjugate set of surfaces, and that means one is applying an orthorhombic tensor as a boundary condition. In applying an orthorhombic stress to an isotropic material, the effect can have a symmetry no lower than that of the combined causes, according to the symmetry principle. Thus the effect must have at least orthorhombic symmetry, which is the symmetry of the combined causes (orthorhombic stress and isotropic material properties). Thus applying an (orthorhombic) stress boundary condition to an isotropic material cannot produce a monoclinic effect (monoclinic velocity gradient).

The only way to get a monoclinic effect is to apply monoclinic boundary conditions, which one can do by applying monoclinic velocity boundary conditions, or in effect a monoclinic velocity gradient tensor. The effect then has a higher symmetry (orthorhombic stress) than the combined causes, which have a monoclinic symmetry (monoclinic velocity gradient with isotropic material properties). This is permitted by the symmetry principle, which states that the effect symmetry must include those symmetry elements that are common to the combined causes, but can have other symmetry elements as well, i.e. the effect symmetry can be higher than that of the combined causes.

So I would argue that to produce a simple shear between two parallel plates, although you may think you are only applying a shear stress to the rigid plate, in fact you must be applying a velocity boundary condition in order for the resulting deformation to be a simple shear, because applying only an (orthorhombic) stress to an isotropic material cannot give you a monoclinic effect.

The boundary conditions must affect the entire deformation. Solving the equations of motion basically requires an integration, which leaves undetermined constants (or functions for partial differential equations) in the solution. The presence of these undetermined constants or functions in the solution means that there is a whole class of different solutions that can satisfy the differential equations, depending on the value of the constants or the form of the functions. It is the application of boundary conditions that allows one to pick out the unique values of the constants or forms of the functions, and these then identify the unique solution to the integrated equations from among this whole class of possible solutions. The compatibility conditions eliminate those solutions that would result in an overlapping or a separation of the material.

Eichuble March 27 11 6.15pm

The frequent choice of stress boundary conditions for brittle failure analysis is simply one of convenience for the problem at hand. For an engineer predicting failure of a structure, the problem is frequently defined through a design load that the structure has to withstand. Strain or displacement boundary conditions would be equally valid and are, in fact, the boundary conditions of choice for some numerical simulations of rock fracture propagation (e.g. Olson, J. E. 2007. Fracture aperture, length and pattern geometry development under biaxial loading: a numerical study with applications to natural, cross-jointed systems. Geological Society, London, Special Publications 289 (1), 123-142).

Micropolar theory, mentioned by Rob Twiss, has been used to formulate a relationship between stress and deformation in granular media that considers the thickness of the resulting deformation band (Voyiadjis, G. Z., Alsaleh, M. I., Alshibli, K. A., International Journal of Plasticity 21 (10), 2005). Cauchy-type continuum mechanics lacks a characteristic length scale that would allow such a formulation.

Anderson Moraes March 27 11 7.53

And I would like to highlight that although it should not be the case of refraining from "classical" continuum mechanics I think structural geologist (as I have been doing...) should give more attention to other kind of formulation in continuum mechanics, in special micropolar mechanics (e.g. Cosserat, Mindlin).


Jiang March 27 11 9.42pm

Frankly, that seems a bit like a circular argument. Also, according to your argument, we can altogether get rid of the so-called stress or traction boundary condition. For if shear traction boundary condition must be in fact regarded as a velocity BC, why not the pure shear case as well? But a prescribed velocity BC and a prescribed boundary traction are different boundary constraints.


Twiss March 28 11 12.58am

But when you apply a stress boundary condition, you do not prescribe what the deformation will be; the material will deform according to the constitutive equations. And the material only knows that an orthorhombic stress is applied to the boundary. What, then, requires the material to react by deforming in a simple shear as opposed to a pure shear, for example? What would be the difference between the situation you describe and a situation in which an orthorhombic stress that is applied to the same material produces a pure shear?

My response would be that when an orthorhombic stress is applies to an isotropic material, the deformation (the effect) can have no lower symmetry than orthorhombic, and thus cannot be a simple shear. To get a simple shear, you have to apply monoclinic boundary conditions, and you cannot do that by applying a stress.

I do not understand where you see the circularity in this. If you accept the symmetry principle as valid, it seems to me this result is necessary and unambiguous.


Jiang March 28 11 8.01am

I would like to emphasize that the material deforms according to the whole set of requirements (constitutive equations, compatibility, mechanical laws, nd boundary conditions). You suggest that we must regard a shear traction boundary condition as a velocity condition, merely to make the symmetry
principle apply. If that is what the principle is about, I find it annoying.

Now let's imagine another situation with the fluid between two rigid plates. uppose the plates are vertical and extend infinitely along strike. Add a boundary normal convergence component to the boundary velocity in addition o strike-slip shear and suppose the fluid can move vertically. This is the model Robin & Gruden (1994, JSG) considered for transpression. How does the symmetry principle apply here? In this case, the velocity boundary condition is monoclinic. But the velocity field is triclinic everywhere, except in the middle of the zone.

Again, to me at least, I can use a stress BC to achieve the same velocity field: a normal stress plus a shear stress, in other words, an oblique traction BC.


Twiss March 29 11 12.43pm

I agree with you that the material must deform according to the whole set of requirements. But I think you misunderstand me when you say "we must regard a shear traction boundary condition as a velocity condition, merely to make the symmetry principle apply." I am not trying to force the interpretation of the boundary conditions to fit the symmetry principle. I am trying to use the symmetry principle to understand what the boundary conditions really must be. 

The fact that a rigid plate is used to apply the boundary conditions for simple shear necessarily implies that the displacements (or velocities) at the boundary are constrained. The material is not free to deform at the boundary in any manner other than what is imposed by the motion of the plate. If it really were stress boundary conditions that were being applied, there should be no restriction on the displacements (or velocities) of the deforming material. That is why I think that one is really imposing displacement boundary conditions, not stress boundary conditions.

You raise a good point in your thought experiment for convergent shear. The conditions you propose, however, require the deformation to be inhomogeneous, if the fluid has to stick to the rigid plates but still accommodate the convergence with a constant-volume flow. Applying the symmetry principle to the global deformation is only valid if the boundary conditions are uniform and if the resulting global deformation is homogeneous, because that is the only situation in which the local and the global conditions are the same.

Perhaps we have imposed this discussion on the list members long enough now to stop postings and continue as a private discussion if necessary. Perhaps we will just agree to disagree? But I have enjoyed the exchange!


Jiang March 29 3.25pm

I don't think you give any reason why the velocity BC cannot be regarded equivalently as a shear traction BC other than that the latter perspective does not come to terms with the symmetry principle. I do feel that this is forced on, merely by the symmetry principle. 
One can calculate the stress at the interface between the plates and the fluid, and fictitiously remove the plates but apply the stress condition everywhere on the boundary. Nothing would change in the mechanics of the system. But as you claimed this is not allowed by the symmetry principle. Isn't this odd?

If the symmetry principle is to be used only locally, then how is it applied to the converging shear zone case? What is this triclinic cause, at every locality, for the triclinic effect (velocity field)? 

In solving a continuum mechanics problem, we have momentum equation, constitutive equations, kinematics, energy equation, and boundary conditions, but never is there a symmetry equation. I wonder if it is a universal principle.


Twiss March 29 11 6.49pm

The symmetry principle is not an extremely powerful principle, but it does put some limits on how one goes about interpreting certain observations and mechanical situations. The discussion in Twiss & Moores "Structural Geology" [Section 17.8, especially subsections ii through iv; p. 537-539] gives examples of how the principle can provide limits to the interpretation of (but not uniquely solve) the deformational significance of fabrics in rocks, and I hope it is clear about the limitations of what the principle can and cannot do. The correct interpretation of rock fabrics has had a long history of interest, research, and debate (at least for those of us with multiple-decadal memories), and the symmetry principle can provide some constraints. So at best, it is of use in constraining possible interpretations of observed phenomena such as fabrics (the inverse problem), not in solving problems in continuum mechanics (the forward problem). 

As to what fundamental laws give rise to the symmetry principle, it is a good question, but I am not sure I can give you a definitive answer. The ideas of symmetry have a long history of being of use in describing, understanding, and even predicting physical phenomena. The symmetry must arise out of the complete set of equations that govern the mechanical behavior. If this were not true, the symmetry principle could be violated, and thus it would not exist as a principle that describes physical phenomena. 

My understanding, such as it is, derives from the paper by Paterson and Weiss 50 years ago [I guess that dates me!!] (1961; Geol. Soc. Am. Bull., 72:843-882) which introduced much clarity into a long running and confused debate about the interpretation of fabrics in rocks, which I think was started by Bruno Sander, an Austrian (?) geologist. Paterson and Weiss ascribed the symmetry principle to Pierre Curie, although I think von Neumann also enunciated similar ideas. 

To me, it is interesting, for example, to have some understanding of why a material deforms in homogeneous pure shear in one situation and in homogeneous simple shear in another. I used to puzzle over this. The difference as I understand it now, is in the boundary conditions — the conditions that are imposed externally on the material. You get homogeneous pure shear using uniform stress boundary conditions, and you get homogeneous simple shear using uniform velocity boundary conditions. To me, this answer provides clarity to the understanding of these different deformation modes, and personally, at least, I came to this understanding through applying the symmetry principle. 

Here is a diagram showing parts of two boundaries on which a pure shear stress is applied as a boundary condition (there are no normal stresses on the boundary). I assume a homogeneous isotropic material between the plates. The stress distribution across the material in between the boundaries must be homogeneous. Between the two boundaries are two material squares, one of which deforms in simple shear (gray parallelogram) and the other of which deforms in pure shear (gray rectangle). The homogeneous principal stresses in the material are shown applied to the undeformed faces of each square (the shear stresses on the simple-sheared square balance, as required by the symmetry of the stress tensor). 

Diagram   Twiss_Stress_bound_Cond,jpg in C:\fieldlog\Temp_eclectic

Jiang March 29 11 10.26pm

I think we are going through a circle now. On the one hand you agree that the velocity field must satisfy the complete set of requirements including compatibility requirement which would account for the antisymmetric part of the velocity gradient (my explanation for the John Waldron problem). On the other hand, you still say you require symmetry principle to explain simple shearing.

For a fluid constrained between two rigid plates moving parallel to each other, the permissible velocity field has no alternative but a progressive simple shearing. This is the requirement of the complete set of equations. In answering John Waldron’s question, I did nothing more than unpacking this set of equations and translating them into English. We do not need to resort to the symmetry principle to understand simple shearing.

Frankly, I find your diagram misleading and may potentially cause terrible confusion. When we speak of pure shear or simple shear, we are referring to a deformation path – whether strain accumulates coaxially or not. Win Means suggested using pure shearing and simple shearing. Your ‘pure shear’ (grey rectangle one) is just the two instantaneous principal strain rate axes – the principal axes of the stretching tensor (the symmetrical part of the velocity gradient). It is quite meaningless to speak of a pure shearing path in terms of just an instantaneous state. Any velocity gradient can be split into a symmetrical part plus a vorticity. But that symmetrical part is not a pure shearing path.

Thank you for the history of the symmetry principle. The more I know the principle, the more I find it irrelevant. Perhaps in the past when geologists must explain fabrics empirically it is of some help. With today’s power of computation, we can test our ideas by numerical modeling. In all the modeling schemes, including those for LPO development in crystalline poly-crystal materials, that I know of, there are no reference to the symmetry principle. Most advances in LPO modeling are in the materials science literature – the self-consistent viscoplastic approach, for instance, is based on the Eshelby formalism, again making no reference to the symmetry principle.

Twiss March 29 11 11.46pm

My responses to your comments are in red. I hope the color survives the posting process. If not, your comments are also marked by a vertical line in the left margin; my responses have no line. 

On Mar 29, 2011, at 7:26 PM, Dazhi Jiang wrote:

Rob, I think we are going through a circle now. On the one hand you agree that the velocity field must satisfy the complete set of requirements including compatibility requirement which would account for the antisymmetric part of the velocity gradient (my explanation for the John Waldron problem). On the other hand, you still say you require symmetry principle to explain simple shearing.


Again I feel misunderstood. I do not require the symmetry principle to explain simple shearing, I use it to infer what boundary conditions can give rise to it (the inverse problem). 

For a fluid constrained between two rigid plates moving parallel to each other 

(i.e. velocity boundary conditions!), 

the permissible velocity field has no alternative but a progressive simple shearing. 

(Ah! Yes, we agree! provided you agree that you have just specified velocity, not stress, boundary conditions, which is what I have been arguing one can infer from the symmetry principle). 

This is the requirement of the complete set of equations. In answering John Waldron’s question, I did nothing more than unpacking this set of equations and translating them into English. We do not need to resort to the symmetry principle to understand simple shearing. 

(And yet it is the symmetry principle, when applied to the inverse problem of interpreting the mechanical conditions that can lead to simple shearing, that tells us the boundary conditions must have been velocity, not stress boundary conditions.) 

Frankly, I find your diagram misleading and may potentially cause terrible confusion. When we speak of pure shear or simple shear, we are referring to a deformation path – whether strain accumulates coaxially or not. Win Means suggested using pure shearing and simple shearing. 

(I agree, my terminology was sloppy. For "pure shear" in my diagram and discussion, please read "pure shearing" or "progressive pure shear", the terminology we used in our Structural Geology text, and similarly for "simple shear" vs. "simple shearing" or "progressive simple shear") 

Your ‘pure shear’ (grey rectangle one) is just the two instantaneous principal strain rate axes – the principal axes of the stretching tensor (the symmetrical part of the velocity gradient). 

(Yes the material lines parallel to the boundaries of the rectangle are parallel to the principal instantaneous strain (or strain rate) axes, and also parallel to the principal axes of finite strain. I did show a finite deformation in the diagrams of the deformed boxes, which could generously be interpreted to imply the result of a progressive deformation path.) 

It is quite meaningless to speak of a pure shearing path in terms of just an instantaneous state. Any velocity gradient can be split into a symmetrical part plus a vorticity. But that symmetrical part is not a pure shearing path. 

(If the finite deformation that I show is interpreted in terms the the accumulation of instantaneous strains, then it seems evident that the "(progressive) pure shear" has instantaneous strain axes parallel to the finite strain axes, which is the characteristic of progressive pure shear. Similarly, for the diagram I show of "(progressive) simple shear", the instantaneous strain axes cannot be parallel to the finite strain axes. My apologies to all who may have been confused by my sloppy terminology. 

Thank you for the history of the symmetry principle. The more I know the principle, the more I find it irrelevant. Perhaps in the past when geologists must explain fabrics empirically it is of some help. With today’s power of computation, we can test our ideas by numerical modeling. In all the modeling schemes, including those for LPO development in crystalline poly-crystal materials, that I know of, there are no reference to the symmetry principle.

(And of course, none are needed, since the symmetries are necessarily built into the forward modeling equations. Perhaps you are not a field geologist who is usually faced with the inverse problem rather than the forward problem. Certainly the forward problem is more elegant and complete, as long as you really know what all the constraints of the real material are, but is that always true?) 

Most advances in LPO modeling are in the materials science literature – the self-consistent viscoplastic approach, for instance, is based on the Eshelby formalism, again making no reference to the symmetry principle. 

(Again you are talking of the forward modeling problem for which the symmetries are already built into the governing set of equations. Since you seem to be someone who uses a forward modeling approach, I propose: 

A TEST: 

Set up a forward modeling numerical experiment on a computer for a system such as is illustrated in my diagram, using ONLY stress boundary conditions, so that the motion of the material lines making up the boundary of the body of material is not in any way constrained a priori. 

A PREDICTION: 

I would predict that, unlike in progressive simple shear, the horizontal material lines in the system will rotate [see the dashed lines in my diagrams, [but take into account the drafting error for the rectangle, in which the dashed line should go from corner to corner]), and this rotation will necessarily affect the horizontal boundaries of the body, which of course are initially horizontal material lines. 

It should be a fairly straight-forward test to set up and run, and probably it is the only way we will resolve this argument at this point. 

Can you do it?)

Jiang March 30 11 9.20am

Frankly, I find your diagram misleading and may potentially cause terrible confusion. When we speak of pure shear or simple shear, we are referring to a deformation path – whether strain accumulates coaxially or not. Win Means suggested using pure shearing and simple shearing. 

(I agree, my terminology was sloppy. For "pure shear" in my diagram and discussion, please read "pure shearing" or "progressive pure shear", the terminology we used in our Structural Geology text, and similarly for "simple shear" vs. "simple shearing" or "progressive simple shear") 

[I was not picky on terminology. My intention was on concept. Both your rectangle and parallelogram diagrams are simple shearing in terms of path. The rectangle one is just an instantaneous state of the strain rate or the infinitesimal strain increment. Did I misunderstand you again?] 

Your ‘pure shear’ (grey rectangle one) is just the two instantaneous principal strain rate axes – the principal axes of the stretching tensor (the symmetrical part of the velocity gradient). 

(Yes the material lines parallel to the boundaries of the rectangle are parallel to the principal instantaneous strain (or strain rate) axes, and also parallel to the principal axes of finite strain. I did show a finite deformation in the diagrams of the deformed boxes, which could generously be interpreted to imply the result of a progressive deformation path.) 

[Because of vorticity, how can the principal axes of finite strain remain at the same principal orientation as the principal strain rate axes?]

It is quite meaningless to speak of a pure shearing path in terms of just an instantaneous state. Any velocity gradient can be split into a symmetrical part plus a vorticity. But that symmetrical part is not a pure shearing path. 

(If the finite deformation that I show is interpreted in terms the the accumulation of instantaneous strains, then it seems evident that the "(progressive) pure shear" has instantaneous strain axes parallel to the finite strain axes, which is the characteristic of progressive pure shear. Similarly, for the diagram I show of "(progressive) simple shear", the instantaneous strain axes cannot be parallel to the finite strain axes. My apologies to all who may have been confused by my sloppy terminology.

[Again, my criticism is not really terminology. I am just focusing on concepts. Your pure shearing is not a permissible deformation path in this thought experiment shear zone. Once again, let me state the model as a shear traction boundary-condition problem. Imagine a zone of viscous fluid between two rigid plates. Now keep one plate fixed and apply a constant force purely parallel to and on the other plate. The material will flow. And depending on its viscosity variation with time, it flows faster or slower under the given constant stress. Now isn’t this 100% shear traction or stress boundary condition? To me it is and the only permissible flow field in the material is a progressive simple shear. Your progressive pure shear is not permissible in this scenario.] 

Johnson March 30 11 10.13am

Rob’s point is this: by bounding the fluid with solid plates one is imposing a boundary condition that must result in simple shear. His test is to take a fluid square, apply stress boundaries to it without having rigid plates (so that the top and bottom boundaries are just material lines), and see if the internal velocity of the fluid deviates from simple shear.

Jiang March 30 11 11.01am

This is not the issue I believe. Why would one need to test that? The issue is why the velocity boundary condition cannot be replaced by an equivalent shear traction boundary condition. Yes, the velocity BC is simple and straightforward. But we achieve the same simple shearing by the following thought experiment: 

“Imagine a zone of viscous fluid between two rigid plates. Now keep one plate fixed and apply a constant force purely parallel to and on the other plate. The material will flow. And depending on its viscosity variation with time, it flows faster or slower under the given constant stress.”

This is a traction or stress boundary condition as I understand it. But according to Rob, this cannot be, because it does not comply with the symmetry principle. Isn’t this odd?

Johnson March 30 11 11.58am

my interpretation of what he is saying is that the symmetry principle allows the applied stress/traction to be interpreted in terms of velocity boundary conditions, as opposed to invalidating the stress/traction condition. I have never applied the symmetry principle, and don’t know that it would find much utility in what I do.

I generally find it easier to use velocity boundaries on models, partly because we know something about velocities from GPS data, but I have also been successful applying stress/traction conditions, and in some instances (pressured magma chamber for example) they are more useful. I guess the symmetry principle might be used to interpret these conditions in terms of velocities, but with something like a pressured chamber I prefer to think in terms of the stresses.

Jiang March 30 11 12.09pm

I agree in geological situations, velocity BC is more relevant in many cases. But our discussion was purely to understand the concept.

Twiss March 30 11 12.27pm

My counter responses are in green: 

The two squares in my diagram were meant to represent two different progressive deformation responses to the mechanical situation. The square deforming to a rectangle IS a possible deformation if the boundary conditions allow the boundary (and any material line in the body parallel to it) to rotate, which it is free to do if stress boundary conditions are applied. The only way to prevent it from rotating is to apply velocity boundary conditions that specify that the boundary MUST NOT rotate. When you specify a rigid plate at the boundary that moves parallel to itself and is not allowed to rotate, you are imposing velocity boundary conditions. That is how you get the simple shear. 

On Mar 30, 2011, at 6:19 AM, Dazhi Jiang wrote:

Rob, 

I agree we should stop discussing the symmetry principle here but just want to clarify one point in your reply (below). My reply in blue and within [ ] 

Frankly, I find your diagram misleading and may potentially cause terrible confusion. When we speak of pure shear or simple shear, we are referring to a deformation path – whether strain accumulates coaxially or not. Win Means suggested using pure shearing and simple shearing. 

(I agree, my terminology was sloppy. For "pure shear" in my diagram and discussion, please read "pure shearing" or "progressive pure shear", the terminology we used in our Structural Geology text, and similarly for "simple shear" vs. "simple shearing" or "progressive simple shear") 

[I was not picky on terminology. My intention was on concept. Both your rectangle and parallelogram diagrams are simple shearing in terms of path. The rectangle one is just an instantaneous state of the strain rate or the infinitesimal strain increment. Did I misunderstand you again?]

I think you have misunderstood. The edges of the square on the right do not rotate during the progressive deformation; they remain orthogonal and parallel to BOTH the principal axes of instantaneous strain and the principal axes of finite strain. This is a characteristic of progressive pure shear, but NOT of progressive simple shear. Note the material plane parallel to the boundary DOES rotate (dashed lines diagonal to the square and the rectangle). In the diagram on the left, the only orientation of material line that does not rotate is the horizontal one parallel to the boundary. Any material line parallel to the principal axes of instantaneous shear rotate, and they are NOT parallel to the principal axes of finite strain. These are characteristics of progressive simple shear. Thus these two squares are meant to represent two different progressive deformations, and the question is which one will actually occur, and what makes the difference between when one occurs and when the other occurs. I think that the progressive pure shear occurs when stress boundary conditions are applied, and that progressive simple shear occurs when velocity boundary conditions are applied. 

Your ‘pure shear’ (grey rectangle one) is just the two instantaneous principal strain rate axes – the principal axes of the stretching tensor (the symmetrical part of the velocity gradient). 

(Yes the material lines parallel to the boundaries of the rectangle are parallel to the principal instantaneous strain (or strain rate) axes, and also parallel to the principal axes of finite strain. I did show a finite deformation in the diagrams of the deformed boxes, which could generously be interpreted to imply the result of a progressive deformation path.) 

[Because of vorticity, how can the principal axes of finite strain remain at the same principal orientation as the principal strain rate axes?]


The deformation of the square on the right represents a progressive pure shear, for which the vorticity is zero. Perhaps you are imagining that the only possible deformation geometry is a progressive simple shear and do not even consider the possibility that it could be progressive pure shear?

It is quite meaningless to speak of a pure shearing path in terms of just an instantaneous state. Any velocity gradient can be split into a symmetrical part plus a vorticity. But that symmetrical part is not a pure shearing path. 

(If the finite deformation that I show is interpreted in terms the the accumulation of instantaneous strains, then it seems evident that the "(progressive) pure shear" has instantaneous strain axes parallel to the finite strain axes, which is the characteristic of progressive pure shear. Similarly, for the diagram I show of "(progressive) simple shear", the instantaneous strain axes cannot be parallel to the finite strain axes. My apologies to all who may have been confused by my sloppy terminology. 

[Again, my criticism is not really terminology. I am just focusing on concepts. Your pure shearing is not a permissible deformation path in this thought experiment shear zone. 

It seems to me you are hung up on this HAVING to be a shear zone. I am asking the question, will it behave like a shear zone (deformation of the left square) or will it deform in progressive pure shear (deformation of the right square)? And under what conditions with each occur? Given a body of homogeneous isotropic material, one can certainly make it deform in a progressive pure shear. We are considering that this body is a homogeneous isotropic material. Under what circumstances will it deform in a progressive pure shear? Again, I suggest that if you force it to deform in simple shear by applying velocity boundary conditions (a rigid plate moving parallel to itself), obviously you will get simple shear. But if you just apply a homogeneous stress to a body of this material, it will deform in progressive pure shear. 

Once again, let me state the model as a shear traction boundary-condition problem. Imagine a zone of viscous fluid between two rigid plates. Now keep one plate fixed and apply a constant force purely parallel to and on the other plate.

OK! Right here, by specifying rigid plates one of which moves parallel to itself, you are constraining the possible displacement of the boundary. This is therefore NOT simply a stress boundary condition. Yes, to make the plate move, one has to apply a force. But you have left out the forces that must be applied to prevent the plate from rotating, which are necessary to apply in order to get the simple shear.

The material will flow. And depending on its viscosity variation with time, it flows faster or slower under the given constant stress. Now isn’t this 100% shear traction or stress boundary condition? 

No. See preceding comment.

To me it is and the only permissible flow field in the material is a progressive simple shear. Your progressive pure shear is not permissible in this scenario.] 

Given the scenario you have constructed, I agree that simple shear will result. But your scenario does not leave the boundary free to rotate. You impose on the boundary a rigid plate that does not rotate, then you move the plate parallel to itself, and then you think you are only applying shear stress boundary condition. In fact, you are applying a velocity boundary condition. Imagine, perhaps, applying a shear stress by blowing a stream of air across the boundary so that the boundary is free to rotate. Then what would happen? 

I have revised my diagram slightly to show the shear stresses on the squares. And I have drawn a material square on the "Pure shearing" diagram with sides parallel and perpendicular to the "boundary" so that it encloses the square I had previously drawn. The stress state is exactly the same as before (see the principal stresses on the boundary), but I have shown the shear stress on the boundary and represented the state of stress on the squares by the shear stresses on the sides of each square. As before, the normal stresses on horizontal and vertical planes are zero. This diagram emphasizes how the state of stress in the two situations for simple shearing and for pure shearing are the same. 

If you just look at the shear stresses on the squares, and forget for a minute the boundary conditions on the whole body, can you say whether the deformation will be represented by the square on the left or the one on the right? According to the mechanical equations, both represent possible solutions, and it is only when you specify boundary conditions can you determine which of the two will result. I suggest that with stress boundary conditions, the deformation would be represented by the progressive pure shear in the diagram on the right. It is only when you impose the displacement boundary condition for progressive simple shearing (boundary conditions that I have not represented in this diagram, since I only show stress boundary conditions) that the deformation would be represented by the square on the left.

Jiang March 30 1.07pm

Rob argues that if one removes the rigid plates, the fluid boundary plane will have the freedom to rotate and therefore will allow a coaxial path. This argument is not valid.

In my description of the thought experiment, I have made it as simple as possible. Now when applying a shear traction, the plate moves and normal stress will develop at the interface between the fluid and the plates. Let’s include this normal stress in addition to the shear stress in the traction boundary condition specification. We now have an oblique traction boundary condition. What happens?

The dilemma remains: Regarding the problem as traction BC problem? Why not? But this will violate the symmetry principle, as Rob claims. Regarding it as a velocity BC will resolve the difficulty.

But here is my question: why should the symmetry principle discriminate these 2 perspective views of the BC.

Twiss March 30 11 4.22 pm

A clarification of the diagram in my last post.  I neglected to show the deformed shape of the outer box in the right diagram.  In this revision, the black shows the undeformed shapes; red shows the deformed shapes.  Here's the description from the last post: 

I have revised my diagram slightly to show the shear stresses on the squares.  And I have drawn a material square on the "Pure shearing" diagram with sides parallel and perpendicular to the "boundary" so that it encloses the square I had previously drawn.  The stress state is exactly   same as before (see the principal stresses on the boundary), but I have shown the shear stress on the boundary and represented the state of stress on the squares by the shear stresses on the sides of each square.  As before, the normal stresses on horizontal and vertical planes are zero.  This diagram emphasizes how the state of stress in the two situations for simple shearing and for pure shearing are the same.  

If you just look at the shear stresses on the squares, and forget for a minute the boundary conditions on the whole body, can you say whether the deformation will be represented by the square on the left or the one on the right?  According to the mechanical equations, both represent possible solutions, and it is only when you specify boundary conditions can you determine which of the two will result.  I suggest that with stress boundary conditions, the deformation would be represented by the progressive pure shear in the diagram on the right.  It is only when you impose the displacement boundary condition for progressive simple shearing (boundary conditions that I have not represented in this diagram, since I only show stress boundary conditions) that the deformation would be represented by the square on the left.

The symmetry principle simply states that there must be a symmetry relationship between causes and effects in the mechanical process, and it specifies how causes and effects must be related symmetrically.  For the inverse problem of inferring the mechanical situation from the deformed material, the symmetry principle tells you that the pure shearing must have been produced by the orthorhombic stress boundary conditions illustrated, and that the symmetry of the simple shearing is too low to be consistent with these orthorhombic boundary conditions.  The simple shearing deformation is only consistent with the monoclinic velocity boundary conditions, such as would be imposed by a rigid plate on one boundary moving parallel to itself relative to a rigid plate on the opposite boundary. 

See Twiss_Stress_Bound_Cond2.jpg in path C:\fieldlog\Temp_eclectic

Jiang March 30 5.04pm

I feel obliged to response to this because I think there are something conceptually important. If you find this annoying, hit the delete key now! My response is in [  ]

