American Journal of Science

SEPTEMBER 2014

TACONIAN OROGENESIS, SEDIMENTATION AND MAGMATISM IN THE SOUTHERN QUEBEC–NORTHERN VERMONT APPALACHIANS: STRATIGRAPHIC AND DETRITAL MINERAL RECORD OF IAPETAN SUTURING

STÉPHANE DE SOUZA^{*,†}, ALAIN TREMBLAY^{*}, and GILLES RUFFET^{**}

ABSTRACT. Cambrian-Ordovician units of the southern Quebec Appalachians oceanic domain include obducted ophiolites and an overlying syncollisional sedimentary basin represented by the Saint-Daniel Mélange and flysch units of the Magog Group. These terrains were thrust onto the Laurentian continental margin during the Taconian orogeny and are unconformably overlain by Silurian-Devonian successor basins. This contribution presents and discusses new stratigraphic data acquired in the oceanic domain, as well as U-Pb and 40 Ar/ 39 Ar geochronological data on detrital zircons and muscovites sampled at various stratigraphic levels, from the base of the sedimentary units of the oceanic domain and the Silurian-Devonian units of the Gaspé Belt. This work, combined with the compilation of existing data for southern Quebec and western New England allows a better definition of the tectono-stratigraphic evolution of the area, and are used to propose correlations with different rock units of the northern New England Appalachians, which represents a collage of Laurentian margin and oceanic units. It is shown that Cambrian-Ordovician rocks of southern Quebec and northern Vermont have undergone a similar tectonic evolution. The ophiolites were obducted onto the Laurentian margin as a more or less coherent slab of oceanic lithosphere. Both the ophiolites and continental margin rocks were uplifted, eroded and unconformably overlain by Middle to Late Ordovician units of the Saint-Daniel Mélange and Magog Group in a forearc setting. The presence of mafic and felsic volcanic flows that are interstratified within the Saint-Daniel Mélange can be correlated with an episode of delamination and slab breakoff during the final stages of obduction and exhumation of the orogenic wedge. The Magog Group was deposited during the emplacement of the Taconian nappes, as the outboard volcanic arc was still active but progressively shutting down. The provenances suggested by the age of the dated detrital minerals can be entirely reconciled with the peri-Laurentian context of the studied rock units and testify of the tectonic evolution and sedimentary recycling of the Taconian orogen, from ophiolite obduction onto the Laurentian margin, to the collapse of the orogenic belt and the formation of successor basins.

Key words: Taconian orogeny, Appalachians, forearc basin, ophiolite, obduction, Humber Zone, Dunnage Zone, Gaspé Belt, detrital zircon, detrital muscovite, geochronology, U-Pb, ⁴⁰Ar/³⁹Ar

INTRODUCTION

The Cambrian-Ordovician Taconian orogeny is a first order lithotectonic feature of the Northern Appalachians that involves the emplacement of large ophiolitic

^{*} Université du Québec à Montréal, Départment des sciences de la Terre et de l'atmosphère, Case postale 8888, Succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada

^{**} CNRS (CNRS/INSU), Université de Rennes 1, Géosciences Rennes, 263 av du général Leclerc, Rennes Cedex, 35042 France

[†] Corresponding author's present address: sdesouza@RNCan.gc.ca; Geological Survey of Canada, 490 de la Couronne, Québec, Canada

Fig. 1. Geological map of the southern Quebec and western New England Appalachians (after Slivitzky and St-Julien, 1987; Moench and others, 1995; Tremblay and Castonguay, 2002; Castonguay and others, 2002; Moench and Aleinikoff, 2002; Hibbard and others, 2006; McWilliams and others, 2010). The Rowe-Hawley belt of northern Vermont includes the Stowe, Moretown and Cram Hill formations. Stratigraphic units of the Connecticut Valley–Gaspé trough are identified by labels in italic. The Gaspé Belt in Quebec: ACF—Ayers Cliff Formation; Ff—Frontenac Formation; LDm—Lac Drolet member; LL—Lac Lambton Formation; PA—Piermont allochthon; WRF—Waits River Formation. AO—Asbestos ophiolite; BBL—Baie Verte-Brompton line; BC—Boil Mountain Complex; BMA—Boundary Mountains Anticlinorium; GSMA—Green and Sutton Mountains anticlinorium; CO—Lac-Brompton ophiolite; NDMA—Notre-Dame Mountains Anticlinorium; O—Oliverian Plutonic Suite; RHB—Rowe-Hawley belt; RMC—Richardson-Memorial contact; RP—Rivière-des-Plante ultramafic Complex; Thetford-

nappes onto Laurentia and the accretion of volcanic arcs and continental blocks as a result of the closure of the Iapetus Ocean and ongoing convergence between Laurentia and Gondwana (St-Julien and Hubert, 1975; Williams, 1979; Stanley and Ratcliffe, 1985; Tremblay, 1992a; Pinet and Tremblay, 1995; Karabinos and others, 1998; van Staal and others, 1998; van Staal, 2007). Evidence for Taconian orogenesis and suturing is particularly well-preserved in the southern Quebec and Vermont Appalachians, which can be divided into three main lithotectonic assemblages: the Early Paleozoic Humber and Dunnage zones, and the overlying Silurian-Devonian successions of the Connecticut Valley-Gaspé trough (fig. 1; Williams, 1979; Bourque and others, 2000; Lavoie and Asselin, 2004; Tremblay and Pinet, 2005; Rankin and others, 2007). The Humber and Dunnage zones were amalgamated during the Taconian orogeny and represent, respectively, vestiges of the Laurentian continental margin and adjacent oceanic basin (Williams, 1979). Although many plate tectonic models have been proposed for the evolution of the southern Quebec-Vermont Appalachians, these interpretations are hindered by scarce geochronological constraints and by poor understanding of various lithostratigraphic components of the Dunnage zone, and their significance in paleotectonic reconstructions (Doolan and others, 1982; Tremblay, 1992a; Pinet and Tremblay, 1995).

In this contribution we present detailed field observations and detrital zircon U-Pb and muscovite ⁴⁰Ar/³⁹Ar geochronological data for volcanic and sedimentary rocks of the Dunnage zone and the Connecticut Valley-Gaspé trough of southern Quebec. It will be shown that these syn- to post-orogenic units form an almost continuous lithostratigraphic record of Ordovician to Devonian basin formation and ongoing tectonics. The stratigraphy, age, and provenance of the studied rock units can be reconciled with the regional stratigraphic framework of the southern Quebec and northern Vermont Appalachians in order to propose a comprehensive tectonic model for this part of the Taconian orogen, from the emplacement of ophiolitic nappes onto Laurentia and formation of an onlapping forearc basin during the Ordovician, to formation of successor basins in the Silurian to Early Devonian.

REGIONAL SETTING

The Southern Quebec-Northern New England Appalachians

In southern Quebec and New England, the Humber zone consists of a fold-andthrust belt that is represented by Neoproterozoic to Early Ordovician siliciclastic and minor basaltic rift and passive margin rocks, which are subdivided into a subgreenschist grade external zone and an upper greenschist to amphibolite facies internal zone (fig. 1). The internal Humber zone is limited to the southeast by a series of major normal faults known as the Baie Verte-Brompton line–Saint-Joseph fault in southern Quebec (Pinet and others, 1996; Tremblay and Castonguay, 2002; Castonguay and Tremblay, 2003), which extends into Vermont as the Burgess Branch fault zone (Kim and others, 1999; Castonguay and others, 2012). Dunnage zone rocks are exposed to the southeast of the Baie Verte–Brompton line as part of the Saint-Victor synclinorium in southern Quebec and of the Rowe-Hawley belt in northern Vermont (fig. 1; Doolan and others, 1982; Tremblay, 1992a). The Connecticut Valley–Gaspé trough is located to the southeast of the La Guadeloupe fault and is underlain by Silurian-Devonian rocks that form part of the Gaspé Belt in southern Quebec (Tremblay and Pinet, 2005) and that can be mapped continuously southward into western New England, where it is

Fig. 1 (continued). Mines ophiolite; UT—Underhill Thrust. Asterisks indicate the location of sampling sites for the U-Pb and ⁴⁰Ar/³⁹Ar data presented in this study: A—samples 07BUNKER and 10BUNKER01; B—09SV01; C—09SV02; D—09MILAN01; E—09MILAN02; F—08M44.

1068

Fig. 2. Schematic correlation chart for the Humber and Dunnage zones of the Beauce, Thetford-Mines, and Lake Memphremagog areas, and the various units of the Gaspé Belt of southern Quebec. Inferred correlations with the Rowe–Hawley belt and Connecticut Valley sequence of Vermont are also illustrated. See text for discussion. ACF—Ayers Cliff Formation; CR—Cranbourne Formation; GL—Glenbrooke Group; LA—Lac Aylmer Formation; LLF—Lac Lambton Formation; SL—Saint-Luc Formation. The samples presented in the text are symbolized by asterisks: A—O7BUNKER; B—08M44; C—10BUNKER01; D—09SV01; E—09SV02; F—09MILAN02; G—09MILAN01. The wavy lines highlight the presence of unconformities.

informally referred to as the Connecticut Valley sequence (fig. 1; Rankin and others, 2007; McWilliams and others, 2010). A revised stratigraphic correlation chart for the study area is presented in figure 2 and illustrates new and previously proposed interpretations, as well as the position of the stratigraphic units and unconformities presented and discussed herein.

The southern Quebec Dunnage zone.—The Dunnage zone of southern Quebec includes 1) a series of well-preserved to dismembered ophiolite complexes; 2) the Saint-Daniel Mélange; 3) the Magog Group; and 4) the Ascot Complex (fig. 1).

The ophiolites occur on the northwestern limb of the Saint-Victor synclinorium and represent correlative remnants of obducted suprasubduction zone ophiolites made up of oceanic crust and mantle, and of sub-ophiolitic metamorphic sole rocks (Schroetter and others, 2003; De Souza and others, 2008, 2012; Tremblay, and others, 2011). U-Pb zircon ages for ophiolitic plagiogranites vary from 504 ± 3 Ma in the Mont-Orford ophiolite (David and Marquis, 1994), to 478 + 3/-2 and 480 ± 2 Ma in the Thetford-Mines ophiolite (Whitehead and others, 2000).

The Saint-Daniel Mélange is exposed on both limbs of the Saint-Victor synclinorium and was previously interpreted as an accretionary complex dominantly composed of an argillaceous-to-conglomeratic matrix with deca- to kilometer-scale olistoliths and lithotectonic slivers of ophiolitic, sedimentary and volcanic rock units, such as the Bolton Igneous Group and Bunker Hill sequence in the Lake Memphremagog area, and the Ware Volcanics in the Beauce area (figs. 1, 3, and 4; Doolan and others, 1982; Cousineau and St-Julien, 1992; Tremblay, 1992a). Recent work has rather shown that the Saint-Daniel Mélange represents the lower part of a syncollisional sedimentary basin that unconformably overlies various stratigraphic levels of the ophiolites including crustal, mantle and sub-ophiolitic metamorphic rocks (figs. 2 and 3; Schroetter and others, 2006; De Souza and others, 2008; De Souza and Tremblay, 2010a). Pillowed basaltic-to-andesitic rocks, diabase and gabbro of the Bolton Igneous Group form conformable horizons of volcanic rocks and related dikes and/or sills interlayered within and crosscutting the Saint-Daniel Mélange (Doolan and others, 1982; Rickard, 1991; Mélançon and others, 1997; De Souza, ms, 2012), whereas the Ware Volcanics are made up of dacitic to rhyolitic volcanic rocks occurring as lens-shaped bodies within siltstone and slate of the Saint-Daniel Mélange in the Beauce area (fig. 4; Cousineau and St-Julien, 1992; De Souza, ms, 2012). The Bunker Hill sequence is a volcano-sedimentary rock assemblage that is divided into two informal members: a volcanic member consisting of pyroclastic and volcaniclastic rocks and a sandstonedominated sedimentary member petrographically similar to the Caldwell Group of the Humber zone (Blais, ms, 1991; Tremblay, 1990).

The Magog Group comprises a *ca.* 10 km-thick Middle to Late Ordovician flysch succession that unconformably overlies the Saint-Daniel Mélange (figs. 3 and 4; Cousineau and St-Julien, 1994; Schroetter and others, 2006).

The Ascot Complex represents the remnants of a peri-Laurentian volcanic arc (fig. 3; Tremblay and others, 1989; Tremblay, 1992a). It is composed of felsic and mafic volcanic rocks and a syn-volcanic pluton that are overlain by, and in fault contact with pebbly phyllites that correlate with those of the Saint-Daniel Mélange (Tremblay and others, 1989; Gauthier and others, 1989; Tremblay and St-Julien, 1990). Felsic volcanic rocks and granite belonging to the Ascot Complex have yielded U-Pb zircon ages of

Fig. 2 (continued). The stratigraphic nomenclature for the Gaspé and Rowe-Hawley belts are from Lavoie and Asselin (2004) and Doolan and others (1982), whereas the one of the Connecticut Valley sequence is shown as compiled in McWilliams and others (2010). The Ordovician-Silurian and Devonian time scales are from Sadler and others (2009) and Gradstein and others (2004), respectively. Note change in time scale at 450 Ma.

Fig. 3. Geological map of the Lake Memphremagog area in southern Quebec and northen Vermont (after Lamothe, 1979, 1981a, 1981b; Gale, ms, 1980; De Romer, 1980; Doolan and others, 1982; Slivitzky and St-Julien, 1987; Rickard, 1991; Tremblay, 1990, 1992b; Huot, ms, 1997; Kim and others, 1999; De Souza and others, 2008). BBFZ—Burgess Branch fault zone; BBL—Baie Verte-Brompton line; MLFZ—Massawippi Lake fault zone; MRF—Magog River fault; other symbols as in figure 1. See figure1 for location.

Fig. 4. Geological map of the Beauce area (after Cousineau, 1986, 1990; St-Julien, 1987; De Souza and Tremblay, 2010a). Asterisks indicate sample locations. See figure 1 for location.

 460 ± 3 Ma and 441 + 7/-12 Ma (David and Marquis, 1994), and an 40 Ar- 39 Ar muscovite age of 462 ± 2 Ma (Tremblay and others, 2000).

The Vermont Rowe-Hawley belt.--Dunnage and Humber zone rocks of southern Ouebec can be mapped continuously into the Vermont Rowe-Hawley belt (figs. 1 and 2; Doolan and others, 1982). The main stratigraphic correlations across the Quebec-Vermont international border are summarized and illustrated in the geologic map of figure 3. Well-preserved ophiolites are not present in northern Vermont, but amphibolites, serpentinites, felsic gneisses and granitoid rocks discontinuously exposed from central Vermont to Connecticut are believed to represent dismembered Early Ordovician forearc-arc-backarc terranes (for example, the Shelburne Falls arc; Stanley and Ratcliffe, 1985; Kim and Jacobi, 1996, 2002; Karabinos and others, 1998). The Saint-Daniel Mélange is mapped into Vermont as the Cram Hill Formation (Doolan and others, 1982 and references therein). The contact between the Cram Hill Formation and the underlying Stowe Formation, which correlates with the Caldwell Group of the southern Quebec Humber zone, is marked by the Umbrella Hill Formation conglomerate and has been interpreted either as an unconformity (Doolan and others, 1982; De Souza and Tremblay, 2010b) or a fault (Stanley and Ratcliffe, 1985; Kim and others, 1999). Quartz arenite, feldspathic sandstone and phyllite of the Moretown Formation of Vermont do not have any known counterpart in southern Quebec and have been divided into western and eastern informal members (Kim and others, 1999), that either represent part of the Humber or Dunnage zone, or both (Rowley and Kidd, 1981; Doolan and others, 1982; Stanley and Ratcliffe, 1985; Kim and others, 1999; Kim, 2006; De Souza and Tremblay, 2010b). The Bolton Igneous Group of southern Québec has been correlated with the Coburn Hill Volcanics and the Mount Norris Intrusive Suite (Kim and others, 2003). The latter consists of diabase dikes that cut across previously-foliated rocks of the Moretown and Stowe formations,

and have been interpreted as the result of syn-tectonic Taconian magmatism (Kim and others, 2003).

The Gaspé Belt.—In southern Quebec, the Gaspé Belt is made up of two stratigraphic assemblages of Silurian to Early Devonian age (Lavoie and Asselin, 2004). The first assemblage is distributed in a series of synformal outliers that unconformably overlie Dunnage and/or Humber zone rocks to the northwest of the La Guadeloupe fault (fig. 1), whereas the second assemblage underlies the Connecticut Valley–Gaspé trough and is represented by siliciclastic rocks of the the Saint-Francis Group and volcano-sedimentary rocks of the Frontenac Formation (fig. 1). Various tectonic settings have been proposed for the formation of the Connecticut Valley-Gaspé trough [see Tremblay and Pinet (2005) and Rankin and others (2007) for a review] but there is a growing general consensus relating this sedimentary basin to delamination-related extension (van Staal and de Roo, 1995; Robinson and others, 1998; Tremblay and Pinet, 2005; Rankin and others, 2007; McWilliams and others, 2010).

Tectonic Synthesis

The southern Quebec Dunnage and Humber zones and the Rowe-Hawley belt have undergone a threefold tectonic evolution, with evidence of deformation and metamorphism during the Ordovician, the Silurian to Early Devonian and the Middle Devonian (Tremblay and Castonguay, 2002; Castonguay and others, 2012). The oldest structural fabric is a S_{1-2} composite foliation that is attributed to ophiolite emplacement and northwest-directed thrusting of the Humber zone allochthonous nappes during the Taconian orogeny, and has been isotopically dated at 471 to 450 Ma (Tremblay and Pinet, 1994; Castonguay and others, 2001, 2007, 2012; Sasseville and others, 2008; Tremblay and others, 2011; De Souza and others, 2012). Hinterlanddirected (that is southeast) deformation related to post-Taconian backthrusting resulted in the formation of a S_3 foliation and northwest-dipping thrust faults (for example, the Brome-Bennett fault; fig. 1), and culminated with normal faulting along the Saint-Joseph–Baie Verte-Brompton line and Burgess Branch fault zones in southern Quebec and northern Vermont, respectively (Tremblay and Pinet, 2005; Castonguay and others, 2012). This latter episode of regional deformation has been attributed a Silurian-Early Devonian age (*ca.* 435-405 Ma) based on 40 Ar/ 39 Ar dating of Humber zone rocks (Castonguay and others, 2001, 2007, 2012; Sasseville and others, 2008). Finally, Middle Devonian regional metamorphism and related deformation, between ca. 390 to 360 Ma, is present and attributed to the Acadian orogeny (Laird and others, 1984; Tremblay and others, 2000; Castonguay and others, 2001, 2007). It is related to a regional penetrative foliation that forms the oldest structural fabric in rocks of the Gaspé Belt and correlative units of New England (Osberg and others, 1989; Cousineau and Tremblay, 1993; Tremblay and others, 2000; Castonguay and others, 2012).

GEOCHRONOLOGIC AND STRATIGRAPHIC DATA

Field work for this study was mostly conducted in the Beauce and Lake Memphremagog areas, which represent the northeastern and southwestern extremities of the Saint-Victor synclinorium and are underlain by Humber and Dunnage zone rocks. The main structural and stratigraphic features that have been recognized in both areas are illustrated in figures 2, 3 and 4.

Rock units that were studied and sampled for primary and detrital are The Bolton Igneous Group, the Bunker Hill sequence and the Ware Volcanics of the Saint-Daniel Mélange, the turbidites of the Magog Group and Silurian-Devonian siliciclastic rocks of the Compton Formation. These rock units have recorded ongoing tectonic events from the obduction of ophiolites during the Ordovician, to the formation of post-Taconian successor basins during the Silurian-Devonian and are thus instrumental in the interpretation of the paleotectonic history of the Northern Appalachians. The stratigraphic setting of these units and of the various sampling sites is presented in the following sections with the corresponding isotopic age results. The Bolton Igneous Group intrusive facies and the Ware Volcanics have not yielded a sufficient amount of zircon grains for the determination of crystallization ages and most of the separated zircons revealed to be of inherited origin in the Ware Volcanics (see Appendix 1).

Analytical Procedures

Zircon mineral concentrates were prepared from samples of crushed rock by using standard density and magnetic separation techniques. Zircon crystals were extracted from concentrates by handpicking under a binocular microscope, mounted in epoxy and polished for analysis by LA-MC-ICP-MS (laser ablation-magnetic sectorinductively coupled plasma-mass spectrometry). The analyses were conducted at the University of Alberta, Edmonton, Alberta, by using the analytical protocol of Simonetti and others (2005). The analyses that are less than 30 percent discordant are shown in Appendix 1 and illustrated as probability density distribution diagrams in figure 5. Unless mentioned, the 206 Pb/ 238 U ages are used for zircons younger than *ca*. 1000 Ma, whereas the 207 Pb/ 206 Pb ages are used for zircons older than *ca*. 1000 Ma. However, although less precise for zircons younger than ca. 1000 Ma, ²⁰⁷Pb/²⁰⁶Pb ages are generally more accurate and less sensitive to lead loss and instrumental fractionation relative to the ${}^{206}\text{Pb}/{}^{238}\text{U}$ ratio (Gehrels, 2012), and are preferably used for the calculation of weighted mean ages when they form age clusters. Age clusters used for age determinations and the calculation of weighted mean ages were defined as a series of at least six 207 Pb/ 206 Pb or 206 Pb/ 238 U ages that overlap with 2 σ error bars and have a 2σ uncertainty of less that 10 percent. Error bars of 1σ are used in the probability density distribution diagrams, whereas all ages are reported in text at the 2σ level. Cathodoluminescence imaging was conducted at the Microscopy and Microanalysis Facility, University of New Brunswick, Fredericton, New Brunswick, the results of which are summarized in figure 6.

For the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ analyses, muscovite grains were handpicked from the same samples that were processed for the zircon concentrates. Single muscovite grains were then analyzed by laser step-heating at the CNRS-Université de Rennes 1, Rennes, France, following an analytical procedure detailed by Ruffet and others (1991, 1995) and Castonguay and others (2001, 2007). Plateau ages were calculated using a minimum of three consecutive steps representing at least 70 percent of the ${}^{39}\text{Ar}$ released and have apparent ages that agree within 2σ error bars with the integrated age of the plateau segment (Castonguay and others, 2001). All of the muscovite plateau ages are reported in text and in figure 7 using 1σ error bars.

The Bunker Hill Sequence

The Bunker Hill sequence is a volcano-sedimentary rock assemblage that is divided into two informal members: a volcanic member consisting of pyroclastic and volcaniclastic rocks and a sandstone-dominated sedimentary member (figs. 3 and 8; de Romer, 1980; Tremblay, 1990; Blais, ms, 1991). The sedimentary member consists of a monotonous succession of interstratified green to gray and poorly-sorted feldspathic graywacke with discontinuous lenses of quartz-pebble conglomerate, siltstone and mudslate. The major constituents of the graywacke are angular to sub-rounded grains of quartz, plagioclase, K-feldspar, quartzite and granitoid. Younging directions observed in the Bunker Hill sedimentary member are opposite to those found in the overlying Magog Group, which suggests the occurrence of a discontinuity between both units (Tremblay, 1990). Moreover, clasts of foliated green to gray feldspathic graywacke petrographically similar to the one of the sedimentary member (figs. 9A and 9B) are locally found within conglomerate of the Saint-Daniel Mélange, suggesting

Fig. 5. Probability density distribution-frequency diagrams of detrital zircon ages for samples of (A) the Bunker Hill sequence sedimentary member—07BUNKER and (B) volcanic member—10BUNKER01; the Magog Group (C) 09SV01, (D) 09SV02; and the Compton Formation (E) 09MILAN02, (F) 09MILAN01. The age-probability density distribution plots shown in the insets of (B), (D) and (F) are for the youngest age clusters from which were calculated weighted mean ages; ages illustrated by empty boxes were excluded from mean calculations. Insets show ages that are *ca*. 90 percent to 105 percent concordant. Note that in the inset of (F), the ages do not form an age cluster (see text for explanation). All the probability density

Fig. 6. Cathodoluminescence images of dated zircons from (A) the Bunker Hill sequence volcanic member—10BUNKER01; (B) Saint-Victor Formation—09SV02; (C) extra grain sets Compton Formation—09MILAN01b and (D)—09MILAN02b. Dashed lines highlight laser ablation pits and dotted lines delimit inherited zircon cores. The ages of the dated grains are indicated in italic, whereas the numbers in parentheses correspond to the grain numbers of Appendix 1. Scale bars are all 50 µm.

that the Bunker Hill sedimentary member was deformed and overturned prior to the deposition of the Saint-Daniel Mélange.

The volcanic member occurs to the northwest of the sedimentary member and is best exposed in a quarry near Massawippi Lake (fig. 10). It is made up of felsic tuff and chert interlayered with volcanic conglomerate, volcaniclastic sandstone and black phyllite (fig. 9C). A unique characteristic of the volcanic conglomerate and volcaniclastic sandstone is that they both contain bright, green-colored millimetric to centimetric clasts of fuchsite- and chromite-bearing clasts. The volcanic conglomerate is however mostly made up of tuffaceous fragments, with minor amounts of granitic, volcaniclastic

Fig. 5 (continued). distribution plots were generated using AgeDisplay (Sircombe, 2004), whereas weighted mean ages were calculated with Isoplot (Ludwig, 2003). Light gray shaded areas in the background highlight main episodes of continental crust formation and magmatism in the southeastern Superior Province (Wardle and others, 2002; Percival, 2007), the Grenville Province and Paleoproterozoic orogens of the southeastern Canadian Shield (Wardle and others, 2002; Gower and Krogh, 2002; Tollo and others, 2004), Iapetan rift magmatism (Cawood and others, 2001), peri-Gondwanan Avalonian-Ganderian arcs (O'Brien and others, 1996) and peri-Laurentian arcs and ophiolites (Tucker and Robinson, 1990; David and Marquis, 1994; Kusky and others, 1997; Karabinos and others, 1998; Whitehead and others, 2000; Moench and Aleinikoff, 2002; Gerbi and others, 2006). E—Elzevirian Orogeny; G—Grenvillian Orogeny; G.Arcs—peri-Gondwanan arcs; IR Iapetan riftmagmatism; L.Arcs—peri-Laurentian arcs; P—Pinwarian Orogeny; L—Labradorian Orogeny; PO—Paleoproterozoic orogens. New Quebec, Torngat and Makkovik orogens. n—represents the number of analyses presented in the corresponding diagram.

Fig. 7. $^{40}\mathrm{Ar}/^{39}\mathrm{Ar}$ age spectra for detrital muscovites from (A) the St-Victor Formation—09SV01, and the (B) Milan member of the Compton Formation—09MILAN01 (C)—09MILAN02.

and pelitic fragments embedded in a fine-grained felsic matrix (fig. 9D). In the study area, the Saint-Daniel Mélange is successively overlain by felsic tuff and conglomerate

1076

Fig. 8. (A) Detailed geological map and (B) cross-section of the Lake Memphremagog–Fitch Bay area showing stratigraphic relationships between the Saint-Daniel Mélange, Bolton Igneous Group, Bunker Hill sequence and Magog Group. Same symbols for (A) and (B). Symbols for unconformities are as in figure 2. Modified from De Romer (1980), Tremblay (1990) and De Souza (ms, 2012).

of the volcanic member and graphitic pyritiferous black slate of the Beauceville Formation that grades into turbidites of the Saint-Victor Formation (fig. 8).

U-Pb data.—Two samples, a coarse-grained feldspathic graywacke (07BUNKER) and a volcanic conglomerate (10BUNKER01), were selected from the sedimentary and volcanic members of the Bunker Hill sequence, respectively, for U-Pb zircon geochronology (fig. 3). A random selection from the sedimentary member zircon grain set was analyzed and yielded sixty-six ages (Appendix 1). The probability density distribution diagram for this data set is rather simple; it shows a discrete peak at 1675 to 1475 Ma and a more prominent one at 1100 to 925 Ma that represents over 77 percent of the analyzed grains (fig. 5A). Most of the remaining analyses are distributed between these two age groups, and a single Ediacaran age of 594 ± 28 Ma was obtained.

Zircon grains that were dated from the volcanic member show a broad Precambrian age distribution with a dominant composite peak in the 925 to 1250 Ma age interval that represents 34 percent of the analyzed grains (fig. 5B). It is also characterized by a very distinct early Paleozoic age population represented by 24 single grain analyses (fig. 5B) that were obtained from euhedral and elongated to prismatic zircon grains with crystal tips showing well-defined oscillatory zoning without clear evidence of inherited cores (fig. 6A). Sixteen analyses from this early Paleozoic population are

Fig. 9. Field photograph of (A) polymictic conglomerate belonging to the Saint-Daniel Mélange of the Fitch Bay area. The outlined clast is a foliated feldspathic sandstone compositionally similar to the Bunker Hill sequence sedimentary member; (B) detail of (A) showing the sharp contact between the foliated clast and the pebbly matrix. Note that the foliation in the clast (dashed white line) is at high angle to the main foliation (F_4) in the matrix (full white line); (C) well-bedded tuff of the Bunker Hill sequence volcanic member. Younging direction is toward the southeast (white arrow); (D) volcanic conglomerate of the Bunker Hill sequence volcanic member that was sampled for U-Pb zircon dating (sample 10BUNKER01). Clasts are highlighted by dotted lines, whereas the full and dashed lines show the trace of the main foliation (S_4) and of a superimposed crenulation cleavage, respectively; (E) turbidite outcrop of the Saint-Victor Formation sampled for U-Pb dating of detrital zircons (sample 058V02); arrow indicates the younging direction (toward the northwest), whereas the white box shows the area of the outcrop that has been sampled; (F) Compton Formation (Milan member) black slate and lithic sandstone; the younging direction is toward the southeast (arrow) and the white box indicates the sampling site of 09MILAN02.

>93 percent concordant and form an age cluster from which was calculated a weighted mean 207 Pb/ 206 Pb age of 455 ± 6 Ma (inset of fig. 5B).

The Magog Group

The lower part of the Magog Group is composed of slate and volcaniclastic rocks attributed to the Beauceville Formation (Slivitzky and St-Julien, 1987), and which have been further subdivided, from base to top, into the Frontière, Etchemin and Beauceville formations in the Beauce area (fig. 4; Cousineau and St-Julien, 1994). The Frontière

Fig. 10. Sketch map of the location and a section of the Bunker Hill quarry where the volcanic member sample 10BUNKER01 was collected.

Formation consists of interlayered chromite-bearing volcaniclastic sandstone and mudslate, the Etchemin Formation is made up of felsic cherty tuff, whereas the

Beauceville Formation is dominated by graphitic slate and volcaniclastic rocks (Cousineau and St-Julien, 1994). The overlying St-Victor Formation is the most extensive unit of the Magog Group and basically consists of quartz- and lithoclast-rich turbidites (fig. 9E; St-Julien, 1987; Cousineau and St-Julien, 1994).

U-Pb and ⁴⁰*Ar*/³⁹*Ar data.*—Two samples of coarse-grained lithic sandstone from the Saint-Victor Formation in the Beauce (09SV01) and Lake Memphremagog areas (09SV02; fig. 9E) were selected for detrital zircon U-Pb and muscovite $\frac{40}{\text{Ar}}$ /³⁹Ar geochronology. Sample 09SV01 yielded abundant zircon grains of various shapes that suggest igneous and metamorphic sources. Most grains are amber to pinkish and reddish-brown colored, show rounded edges and elliptical to discoid and stubby prismatic shapes. Muscovite grains with a diameter of 0.5 to 1.0 mm were separated from that sample for ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ analysis. Only a minor amount of zircon grains was recovered from sample 09SV02, which was moreover devoid of detrital muscovite. Separated zircons consisted mostly of clear euhedral grains with smooth to sharp edges and equant to elongated and bipyramidal crystal shapes, but brownish and anhedral to well-rounded grains and crystal fragments were also present. The probability density distribution diagram for the zircon analyses of sample 09SV01 is characterized by a lack of Paleozoic age populations (fig. 5C). It shows distinct peaks in the Neoarchean (2775-2700 Ma) and the late Paleoproterozoic (1900-1850 Ma) and a prominent and broad age group in the 900 to 1400 Ma age interval. This contrasts with the data set acquired from sample 09SV02, for which 41 percent of the dated zircons yielded two Ordovician $(480 \pm 12 \text{ Ma}; 459 \pm 23 \text{ Ma})$ and thirty-one Silurian to Early Devonian ages (fig. 5D). All of these Paleozoic ages were obtained from euhedral zircons showing oscillatory zoning and lacking well-defined inherited cores (fig. 6B). The remaining analyses from 09SV02 form Neo- to Mesoproterozoic age groups in the 1250 to 1150 Ma and 1100 to 900 Ma intervals, with single grain Paleoproterozoic ages as old as 1900 to 1850 Ma and 1650 to 1600 Ma and Neoproterozoic ages at 675 to 625 Ma. Nine of the analyses yielding Silurian-Early Devonian ages are concordant at *ca.* 90 percent to 105 percent and form an age cluster from which was calculated a weighted mean 238 U/ 206 Pb age of 424 ± 6 Ma (inset of fig. 5D).

The ⁴⁰Ar/³⁹Ar analyses that were performed on muscovite grains from sample 09SV01 yielded five plateau ages, one at *ca.* 1384 (experiment z1335; fig. 7A) and four of them in the *ca.* 943 to 928 Ma age range. A highly-disturbed age spectrum was obtained from experiment z1352, with high- and low-temperature degassing steps suggesting a minimum crystallization age in the Paleoproterozoic (> ca. 1730 Ma) and a strong overprint in the Meso- to Neoproterozoic, respectively (fig. 7A).

The Compton Formation

The Compton Formation belongs to the Saint-Francis Group and is described as a succession of alternating sandstone and mudstone (fig. F) formed in a shallow marine deltaic setting and comprising three informal members, the Milan, Lac-Drolet and Saint-Ludger members (Lafrance, ms, 1995; Lavoie, 2004).

U-Pb and ${}^{40}Ar/{}^{39}Ar$ data.—Two samples, 09MILAN01 and 09MILAN02, were collected from individual beds of Milan member lithic sandstone (see fig. 1 for location of sampling sites). Zircons that were separated from these two samples are of various shapes and colors, varying from well-rounded to prismatic and amber to reddish-brown, and with most grains showing rounded edges. However, euhedral and colorless to light amber colored prismatic to acicular crystals and crystal fragments with sharp edges form a distinct morphological population. Zircon grains were first randomly-selected from both samples. Supplemental grains were carefully handpicked from the euhedral zircon populations to form the 09MILAN01b and 09MILAN02b extra grain sets. Cathodoluminescence imaging of these extra grains has revealed that most show well-defined oscillatory zoning, whereas others are characterized by the

presence of inherited cores that are surrounded by oscillatory-zoned overgrowths (figs. 6C and 6D). The detrital zircon probability density distribution plots for samples 09MILAN01 and 09MILAN02 are more-or-less similar, with a very broad Precambrian age population and Paleozoic ages extending into the Devonian, with ca. 30 percent and 26 percent of the dated grains corresponding, respectively, to 950 to 1100 Ma and 550 to 375 Ma age intervals (figs. 5E and 5F). The 09MILAN01b and 09MILAN02b extra grain sets also yielded Precambrian to Devonian ages (Appendix 1). All Paleoproterozoic to Early Neoproterozoic ages for the extra grain sets were however obtained from inherited zircon cores (fig. 6C). The youngest ages from the 09MILAN01b extra grain set form a well-defined age cluster in the Early to Middle Devonian that is composed of 13 overlapping concordant (95%-101%) analyses yielding a weighted mean 207 Pb/ 206 Pb age of 396 ± 5 Ma (inset of fig. 5F). Only few Devonian ages were obtained from the 09MILAN02b extra grain set, but these do not form an age cluster (inset of fig. 5E). As for samples 09MILAN01 and 09MILAN02, both extra grain sets contain varying amounts of Ordovician to Silurian ages, whereas four Ediacaran ages of 614 ± 32 Ma, 596 ± 31 , 562 ± 17 and 552 ± 17 Ma were obtained from sample 09MILAN02, including the 09MILAN02b extra grain set.

Samples 09MILAN01 and 09MILAN02 yielded abundant detrital muscovite flakes that were analyzed for 40 Ar/ 39 Ar dating. Sample 09MILAN01 shows a bimodal age distribution, with four analyses in the Late Ordovician and two in the Silurian. All dated grains, however, show evidence for Ar loss in the low- to medium-temperature steps of the age spectra at *ca.* 375 to 380 Ma, but two analyses yielded well-defined plateau ages at 459.5 ± 1.9 Ma and 433.3 ± 1.7 Ma (fig. 7B). The remaining age spectra for the Late Ordovician and Silurian muscovite age groups show high-temperature steps up to *ca.* 450 to 455 Ma and 435 to 437 Ma, which represent minimum age estimates for the crystallization and/or cooling below the closure temperature of muscovite (fig. 7B). In sample 09MILAN02, one muscovite grain yielded a plateau age at 459.2 ± 1.9 Ma (fig. 7C; muscovite z1329), whereas the remaining analyses show medium- to high-temperature steps in the age spectra that correspond to a *ca.* 450 to 460 Ma interval. Also, experiments z1329 and z1358 show evidence of thermal resetting in the low-temperature steps of the age spectra at *ca.* 420 to 430 Ma (fig. 7C).

DISCUSSION

Most of the U-Pb detrital zircon ages of this study correspond to major episodes of Appalachian magmatism and/or Laurentian crust formation and amalgamation (fig. 5), and can be separated into three main age groups: 1) Archean (≥ 2500 Ma), 2) Paleoproterozoic to Neoproterozoic (*ca.* 1900-900 Ma) and 3) Cambrian to Devonian (*ca.* 500-400 Ma). The detrital muscovite 40 Ar/ 39 Ar results are less heterogeneous (fig. 6), but still suggest the erosion of Precambrian (*ca.* 1730-930 Ma) and Ordovician to Silurian rocks (*ca.* 460-420 Ma).

Age, Provenance, and Correlation Interpretations

Bunker Hill sequence.—Although the depositional age of the Bunker Hill sequence sedimentary member remains uncertain, upper and lower age limits can be suggested based on stratigraphic relationships with adjacent rock units and the detrital zircon age data presented herein. For the sedimentary member, the youngest single grain zircon age of 594 ± 29 Ma, the lack of Ordovician or younger detrital zircons and its stratigraphic position relative to the Magog Group grossly constrain its maximum and minimum depositional ages to the Ediacaran and Middle Ordovician periods. Besides, the predominance of Mesoproterozoic zircons and the lack of Archean, Paleoproterozoic and early Paleozoic ages in the Bunker Hill graywacke, combined with the absence of felsic volcanic and/or ophiolitic detritus, are consistent with a derivation mainly from Grenvillian crustal sources.

1081

The composition and tectonic history of the Bunker Hill sedimentary member are rather similar to those of sandstone units of the Humber zone, such as the Caldwell Group, a quartzo-feldspathic sandstone-rich unit belonging to the Neoproterozoic-Early Cambrian rift sequence of Laurentia in southern Quebec (Cousineau, 1990; Bédard and Stevenson, 1998). This is suggested by the sialic composition of the sedimentary member, its detrital zircon population dominated by an almost exclusively Grenvillian component and by structural evidence implying an early phase of folding that pre-dated the deposition of the Saint-Daniel Mélange and Magog Group. Antiformal inliers of Humber zone sandstone units occurring beneath the Dunnage zone have been documented from the Thetford-Mines area (Tremblay and Pinet, 1994; Tremblay and Castonguay, 2002; Schroetter and others, 2005) and represent a structural setting similar to the one proposed for the sedimentary member.

The stratigraphic position of the volcanic member relative to the Magog Group slates and the 455 ± 6 Ma age yielded by sample 10BUNKER01 suggest that these volcaniclastic rocks were deposited in early Caradocian time. The presence of detrital chromite grains, together with the felsic and calc-alkaline composition of the volcanic member rather indicate that it formed in the vicinity of a volcanic arc and that there were ultramafic rocks in the source area(s). The randomly-selected detrital zircon grain set of sample 10BUNKER01 also supports considerable recycling of Proterozoic to Archean basement rocks and shows a much more broadly defined Precambrian zircon population than for sample 07BUNKER. Although the contribution of a western source component for these volcaniclastic rocks cannot be excluded, a dominant eastern provenance better accounts for their detrital age variations and composition. The Ascot Complex, with its volcanic arc rock assemblage, strong Laurentian inheritance (Tremblay and others, 1989; Tremblay and others, 1994) and local association with mafic-ultramafic rocks (Tremblay, 1992b; Hébert and Labbé, 1997) represents a good source of detritus for the sedimentary member.

The Bunker Hill sequence volcanic member compares well with the chromitebearing sandstone and felsic tuff of the Frontière and Etchemin formations in the Beauce area (figs. 2 and 4), which have been attributed a Llanvirnian to Caradocian age (Cousineau and St-Julien, 1994). Although that the volcanic member cannot be divided into a sandstone and tuff unit, it consists of a volcanic horizon marking the base of the Magog Group, like the Frontière and Etchemin formations. An almost continuous horizon of undivided volcaniclastic rocks is also present between the Lake Memphremagog and Beauce areas (Slivitzky and St-Julien, 1987) at the same stratigraphic level and most likely represents the continuity of the volcanic member on the northwestern limb of the Saint-Victor synclinorium.

Magog Group.—The maximum age limit of the Magog Group is considered to be early Caradocian based on its graptolite fauna (Cousineau and St-Julien, 1994) and a 462 + 5/-4 Ma zircon age yielded by a felsic tuff of the Beauceville Formation (Marquis and others, 2001). In terms of paleogeographic setting, Cousineau and St-Julien (1994) suggested that the Frontière and Etchemin formations (that is the lowermost stratigraphic units of the Magog Group) were derived mainly from the erosion of a magmatic arc located to the southeast of the Magog basin, and that the Beauceville Formation marks a transition toward northwest-derived continental sources that characterize the Saint-Victor Formation.

Our ⁴⁰Ar/³⁹Ar and U-Pb detrital muscovite and zircon age data for the Saint-Victor Formation bring important new constraints on the age and provenance for the upper part of the Magog Group. The Precambrian detrital zircon and muscovite age distributions for sample 09SV01 are consistent with a derivation from the Grenville and Superior Provinces and possibly from low-grade Taconian nappes of the adjacent Humber zone as recycled sediment, therefore confirming a northwestern source. Contrastingly, the detrital zircon age distribution for sample 09SV02 shows much less dominant Precambrian source contributions and rather suggests a strong input from Ordovician-Silurian magmatic rocks, most likely from Appalachian arc sources (fig. 5D). The 424 \pm 6 Ma weighted mean age that was calculated for the younger zircon grains does not correspond to any known volcanic-plutonic suite in southern Quebec, but possible distal sources, however, include Silurian Piermont Allochthon in western Maine (ca. 430-418 Ma; Moench and others, 1995), as well as late Llandoverian volcanic and volcaniclastic rocks occurring in the westernmost part of the Gaspé peninsula (David and Gariépy, 1990; Bourque and others, 2000). Such a Silurian age result for the Magog Group is presently unique but, if correct, indicates that the St-Victor turbidite sequence is possibly as young as Llandoverian-Ludlovian. This would imply, moreover, that the Magog Group represents a 25 to 35 Ma period of more-or-less continuous sedimentation following the accretion of ophiolites and volcanic arcs to the Laurentian margin, as it seems to be the case for correlative sedimentary sequences of the Gaspé Peninsula (Tremblay and others, 1995; Malo, 2004).

Compton Formation (Saint-Francis Group).—The Lac Lambton Formation, which forms the base of the Saint-Francis Group, is Pridolian-Early Devonian (Boucot and Drapeau, 1968; Achab and Asselin, 1993; Lavoie and Asselin, 2004), whereas the overlying Ayer's Cliff and Compton formations have yielded Pridolian to Early Devonian chitinozoan and plant fragments (Hueber and others, 1990; van Grootel and others, 1995; Lavoie and Asselin, 2004). The upper age limit of the Saint-Francis Group is not known but it predates the Late Devonian Acadian regional metamorphic imprint (<390-375 Ma; Tremblay and others, 2000) and the emplacement of a series of granitic intrusions that crosscut the Gaspé Belt in southern Quebec (384-374 Ma; Simonetti and Doig, 1990). Further age and provenance interpretations can be proposed by examining our U-Pb and ⁴⁰Ar/³⁹Ar data for the Compton Formation. Samples 09MILAN01 and 09MILAN02 show detrital zircon age distributions that suggest contributions from Archean and Proterozoic Laurentian sources, and from Appalachian Cambrian to Devonian magmatic rocks (figs. 5E and 5F). Neoproterozoic ages obtained from sample 09MILAN02 and its extra grain set, 09MILAN02b, between ca. 620 to 550 Ma, overlap with the age interval attributed to Iapetus opening magmatism and peri-Gondwanan Avalonian arcs (figs. 5E and 5F). Conversely, the *ca*. 396 ± 6 Ma weighted mean age calculated for the 09MILAN02b grain set suggests that sedimentation of the Compton Formation has persisted throughout Emsian time.

⁴⁰Ar/³⁹Ar age data for samples 09MILAN01 and 09MILAN02 can be compared with the tectonic-metamorphic evolution recorded by Cambrian-Ordovician rocks of the Humber zone, (1) the 460 to 450 Ma high-temperature steps and ca. 459 Ma plateau ages that characterize both samples correspond to obduction-related regional metamorphism and nappe emplacement, and (2) the ca. 433 Ma plateau age and ca. 437 to 435 Ma high-temperature steps ages of sample 09MILAN01, as well as the low-temperature thermal overprint shown by sample 09MILAN02 at ca. 430 to 420 Ma, can be attributed to the hinterland-directed superposed deformation and related Silurian to Early Devonian metamorphism. This latter metamorphic imprint is recorded only in the low-temperature steps of the muscovite age spectra for sample 09MILAN02, whereas it persists into the medium- to high-temperature steps for sample 09MILAN01, possibly suggesting a deeper exhumation and erosion of the Taconian orogenic wedge for that latter sample. The correlation of detrital muscovite ages from the Compton Formation with the tectonothermal evolution of the internal Humber zone also suggests that Ediacaran zircon ages measured in sample 09MILAN02 can be derived from erosion of rift-related magmatic rocks such as those preserved in Humber zone of southern Quebec (Kumapareli and others, 1989; Hodych and Cox, 2007).

Nevertheless, southeastern-derived peri-Gondwanan sources cannot be firmly excluded.

Saint-Daniel Mélange and related volcanic rocks.—The most common and widely represented rock-types in the Saint-Daniel Mélange are interlayered black and green slate, lithic sandstone, dolomitic siltstone and quartzite, and a diagnostic intraformational pebbly mudstone breccia (Schroetter and others, 2006). However, ophiolitic and metamorphic clast-bearing polymictic debris flow breccias and conglomerates commonly occurring towards the base of the Saint-Daniel Mélange have been documented in various areas of southern Quebec and are known to mark an unconformity overlying the ophiolites and, locally, metamorphic sole rocks (Schroetter and others, 2006; De Souza and others, 2008, 2012; De Souza and Tremblay, 2010a). In northern Vermont, the Umbrella Hill Formation consists of debris flow conglomerates found at the base of the Cram Hill Formation (Doolan and others, 1982). It contains abundant quartz vein, metasedimentary and sedimentary rock fragments (Badger, 1979; Doolan and others, 1982), and unconformably overlies previously metamorphosed and deformed rocks assigned to the Humber zone (Doolan and others, 1982). The Umbrella Hill Formation is located at the same stratigraphic position as the Saint-Daniel Mélange polymictic debris flows and both units contain abundant continent-derived clasts (Doolan and others, 1982; Schroetter and others, 2006). We therefore correlate both units as marker horizons of a Taconian unconformity. As previously proposed (Rowley and Kidd, 1981), the lack of well-preserved ophiolites and related rocks beneath this unconformity in northern Vermont, as well as the absence of ophiolitederived detritus in the Umbrella Hill Formation, suggests that ophiolitic nappes either did not originally extend into northern Vermont or were completely eroded there.

Ordovician (*ca.* 460-463 Ma) volcanic rocks, more-or-less coeval with the Bolton Igneous Group and Ware Volcanics, are also found in the Ascot Complex. Although, the latter has been interpreted as a strongly dismembered volcanic massif (Tremblay and St-Julien, 1990; Tremblay, 1992a), the contact between its volcanic rocks and the overlying sedimentary rocks correlated with those of the Saint-Daniel Mélange and of the Magog Group is locally depositional (Gauthier and others, 1989; Mercier and others, 2012). This relationship suggests that the Ascot Complex forms a volcanic arc basement that was originally overlain by and/or interdigitated with both the Saint-Daniel-type phyllites and the Magog Group siliciclastic sequence. It can also be distinguished from the Bolton Igneous Group and the Ware Volcanics based on the facts that its mafic component shows a wide range of geochemical affinities, varying from mid-ocean ridge basalts, island arc tholeiites and boninitic rocks, and that it is characterized by a unique bimodal composition and the occurrence of a syn-volcanic intrusion. (Tremblay and others, 1989; Hébert and Labbé, 1997).

Paleotectonic Evolution

The isotopic age data and stratigraphic relationships presented above highlight significant differences in the age, provenance and origin of Neoproterozoic(?) to Devonian units of the Saint-Victor synclinorium and the Connecticut Valley–Gaspé trough of southern Quebec. These data can be compared with various geological features of the Quebec-New England Appalachians in order to speculate on the paleotectonic evolution of these terranes. In southern Quebec and western New England, the Taconian orogeny involves the Early to Late Ordovician emplacement of the southern Quebec ophiolites, as well as the formation and accretion of the Shelburne Falls, Ascot Complex and Bronson Hill volcanic arc terranes (Doolan and others, 1982; Stanley and Ratcliffe, 1985; Tremblay, 1992a; Pinet and Tremblay, 1995; Karabinos and others, 1998; Hollocher and others, 2002; Tremblay and Castonguay, 2002). The structural characteristics of the Laurentian margin and the current disposition of ophiolites, mélanges, flysch units and arc volcanics suggest that plate

convergence was accommodated by east-dipping (present coordinates) subduction (Osberg, 1978; Rowley and Kidd, 1981; Stanley and Ratcliffe, 1985; Robinson and others, 1998; Moench and Aleinikoff, 2002; Tremblay and Pinet, 2005; Rankin and others, 2007; Tremblay and others, 2011). However, it is presently uncertain if the final closure of Iapetus Ocean proceeded as the result of subduction dipping beneath (van Staal and others, 1998; Rankin and others, 2007) or away from Laurentia (Stanley and Ratcliffe, 1985; Tremblay and Pinet, 2005). The Ordovician to Devonian paleogeographic and tectonic evolution of the Laurentian margin and peri-Laurentian terranes, as deduced from observations and age data presented above, and from previous work in the southern Quebec and New England Appalachians, is illustrated in figure 11 and can be interpreted as follows.

(1) Taconian obduction and slab breakoff.—Uprooting and thrusting of oceanic lithosphere toward and then onto the Laurentian margin was initiated at *ca.* 479 to 472 Ma, and continued for a period of approximately 15 M.y., as ophiolitic nappes were progressively translated over the continental margin and uplifted with underlying metamorphic rocks at *ca.* 460 Ma (Tremblay and others, 2011). By *ca.* 460 Ma, ophiolitic and continental metasedimentary rocks thus formed an orogenic wedge that was eroded, probably as a forearc ridge(s) from which detritus was recycled oceanward onto a forearc oceanic basin to form olistostromal and conglomeratic units of the Saint-Daniel Mélange (fig. 11A; Schroetter and others, 2006; Tremblay and others, 2011; De Souza and others, 2012). Erosion and uplift of the amalgamated forearc wedge were however irregular along the strike of the collision zone, with an erosion depth reaching the ophiolitic crustal rocks in Thetford-Mines but cutting much deeper into the exhumed continental margin and the adjacent forearc ridge in the vicinity of the Quebec-Vermont border.

As recorded by the Ascot Complex, arc magmatism along Laurentia was penecontemporeneous with Taconian ophiolite obduction and with the formation of the Bolton Igneous Group, Mount Norris Intrusive Suite and Ware Volcanics. We believed that such widespread magmatism can be reconciled with the introduction of Laurentian continental material into the subduction zone. The subduction (or attempted subduction) of buoyant continental lithosphere is an inherent part of arc-continent collisions and ophiolite emplacement, that frequently leads to crustal contamination of subduction zone magmas and delamination-related breakoff of downgoing slabs, providing a favorable setting for the accelerated uplift of the orogenic wedge and the generation of mafic magmas due to asthenospheric upwelling (Cloos and others, 2005; Dewey, 2005; Afonso and Zlotnik, 2011; Brown and others, 2011). Thermochronological studies (Tremblay and others, 2011; De Souza and others, 2012) and paleotectonic data (Pinet and Tremblay, 1995; De Souza and Tremblay, 2010a) suggest a minimum distance of ca. 100 km of underthrusting of the Laurentian margin during the emplacement of the southern Quebec ophiolites. The introduction of subducted sediments into the subduction melting zone may have triggered the formation of abundant felsic magmas (Shimoda and Tatsumi, 1999; Johnson and Plank, 2000; Shimoda and others, 2003), which would then account for the bimodal composition, the inherited crustal signature and strong geochemical variations of supra-subduction zone magmas that characterize the Ascot Complex (fig. 11A; Tremblay and others, 1989; Tremblay and others, 1994; David and Marquis, 1994). Slab breakoff has been already proposed to account for the Mount Norris Intrusive Suite (Kim and others, 2003; Coish, 2010) and a similar mechanism may well be applied to both the Bolton Igneous Group and Ware Volcanics. Collisional delamination resulting in subducting slab breakoff has been documented in New Guinea, where the northern margin of the Australian continent has subducted beneath the Pacific Plate during emplacement of the Irian Ophiolite Belt (Cloos and others, 2005), which fits well as an actualistic model

Fig. 11. Schematic model for the tectonostratigraphic evolution of the southern Quebec and northwestern New England Appalachians in Middle Ordovician to Middle Devonian time. Zircon, muscovite and chromite detrital record discussed in this contribution are indicated in italic with their inferred provenance (bold lettering) and host rock unit(s) (acronyms in parentheses). (A) Delamination and breakoff of the subducted Laurentian lithosphere and formation of the Saint-Daniel Mélange, Bolton Igneous Group, Ware Volcanics and lowermost stratigraphic units of the Magog Group in a syn-obduction forearc basin; (B) the delamination of the continental lithosphere is completed and deformation migrates toward the foreland

for the stratigraphic relationships and age data presented herein for southern Quebec and northern Vermont (fig. 11A). As collision proceeded, continued magmatism and erosion of the Ascot Complex volcanic arc resulted in the dispersal of felsic pyroclastic and/or volcaniclastic rocks throughout the forearc region to form the Frontière and Etchemin formations, and the Bunker Hill sequence volcanic member. The Beauceville Formation of the Magog Group was subsequently formed as the forearc basin subsided and the volcanic arc progressively shut down.

(2) Emplacement of Taconian nappes.—By 460 to 457 Ma, the obduction of ophiolites s.s. was completed and thrusting was transferred within the Humber zone via a foreland-propagating piggy-back thrust system (Tremblay and others, 2011), which was active during most of the Late Ordovician, until ca. 445 Ma (St-Julien and Hubert, 1975; Tremblay and Castonguay, 2002; Sasseville and others, 2008). During this time period, detritus shed from the growing thrust nappes of the Humber zone, as well as from ophiolitic and/or chromite-bearing sedimentary rocks were transported into the forearc sedimentary basin, accounting for the detrital zircon and muscovite record measured in the lower part of the Saint-Victor Formation (fig. 11B). It can also be suggested that isostatic rebound, which is expected to follow subduction slab breakoff (Cloos and others, 2005; Afonso and Zotlik, 2011), contributed to the subaerial exposure and erosion of the outer Laurentian margin of Laurentia, part of which is possibly exposed in the Chain Lakes massif (fig. 11B; De Souza and Tremblay, 2010a). As plate convergence resumed following slab breakoff, subduction along Laurentia underwent polarity flip or transferred oceanward toward a new and/or an already existing subduction zone. Late Ordovician-Silurian subduction beneath Laurentia has been suggested previously (Karabinos and others, 1998; Rankin and others, 2007; van Staal, 2007; Dorais and others, 2008, 2012; van Staal and others, 2008) but the lack of clear stratigraphic evidence for an Andean-type margin and related magmatism in the Quebec Appalachians does not favor the polarity flip model (Pinet and Tremblay, 1995; Hollocher and others, 2002; Tremblay and Pinet, 2005).

By late Llandoverian-Wenlockian time, the Gander margin collided with composite Laurentia, a tectonic event that is referred to as the Salinic orogeny in Maritime Canada (Dunning and others, 1990; van Staal, 2007; van Staal and others, 2008), but the polarity of the subduction zone(s) leading to this accretionary event remains speculative (Tremblay and Pinet, 2005; Aleinikoff and others, 2007; Rankin and others, 2007; Wintsch and others, 2007). If our Silurian age for the uppermost part of the Saint-Victor Formation is correct, it would suggest that the Magog Group evolved from a forearc basin in Late Ordovician times, to an intra- or peri-continental sedimentary basin during the Silurian.

(3) Post-Taconian basin formation.—Extensional collapse of the Taconian orogen and formation of the Connecticut Valley–Gaspé trough was initiated in Pridolian times in southern Quebec (Tremblay and Pinet, 2005). Silurian to Early Devonian (*ca.* 417-405 Ma; Castonguay and others, 2001, 2007, 2012) normal faulting along the Baie Verte–Brompton line and Saint-Joseph fault in southern Quebec provides a mechanism for basin formation during the Silurian, as well as for the erosion and uplift of the

Fig. 11 (continued). during formation of the Taconic Allochthons; (C) extensional collapse of the orogen and formation of the Connecticut Valley–Gaspé trough. Note that sketch (A) is scaled with a vertical exaggeration of ~1.5. Dark gray wavy lines underline the inferred ascent of migrating magma. A—asthenosphere-lithoshere boundary; AC—Ascot Complex; BHA—Bronson Hill arc; BIG—Bolton Igneous Group; CHV—Cram Hill volcanics; CLM—Chain Lakes massif; Cr—chromite; BHV—Bunker Hill sequence volcanic member; FEF—Frontière and Etchemin formations; LMG—lower Magog Group; MM—Milan member; MNIS—Mount Norris Intrusive Suite; Mu—muscovite; SDM—Saint-Daniel Mélange; SVF—Saint-Victor Formation; WV—Ware Volcanics; Zr—zircon. (1) Refers to detrital muscovite ⁴⁰Ar/³⁹Ar age data presented by Schroetter and others (2006) and Tremblay and others (2011).

Laurentian margin and accreted rocks of the Humber and Dunnage zones, which account for much of the detrital muscovite and zircon populations found in the Compton Formation (fig. 11C). Sedimentation in the Connecticut Valley–Gaspé trough persisted throughout the Early Devonian and came to an end with the arrival of the Acadian deformation front in the Middle Devonian (Bradley and others, 2000; Bradley and Tucker, 2002; Tremblay and others, 2000).

The detrital zircon and white mica age distributions presented here for southern Québec (fig. 5) is very similar to detrital age results obtained in the South Mayo Trough of western Ireland (Mange and others, 2010; Yin and others, 2012). The South Mayo Trough represents a well-preserved Lower-to-Middle Ordovician forearc to successor basin developed on an arc-continent collision system related to the 475 to 465 Ma Grampian orogeny (Dewey, 2005; Chew and others, 2010), a tectonic event that is considered to be correlative to the Taconian orogeny of the Canadian Appalachians. In the South Mayo Trough, U-Pb detrital zircon ages cluster around three periods of crustal evolution; Archean (>2500 Ma), Mesoproterozoic (2000-1000 Ma), and Early Paleozoic (550-480 Ma), whereas ⁴⁰Ar/³⁹Ar dating of white micas yielded various ages, accordingly with the stratigraphic position of the studied rock units, but spreading over ages as old Paleoproterozoic (ca. 2400 Ma) and as young as Middle Ordovician (ca. 460 Ma). Tectonically, the South Mayo Trough includes a conformable forearc sequence deposited over an obducting ophiolitic crust/mélange, followed by the development of a synorogenic piggyback basin, and then by an extensional hanging-wall basin developed over exhuming metamorphic rocks of the Grampian orogeny (see Chew and others, 2010). Except for slightly older ages recorded in western Ireland for ophiolite obduction, exhumation, and regional metamorphism of the overthrusted Laurentian margin as compared to southern Québec (that is 10-to-20 Ma; compare Tremblay and others (2011) and Chew and others (2010) for details on the geochronology of theses tectonic events), the paleogeographical and structural model proposed for the South Mayo Trough is very similar to the one we envision for the Dunnage zone and Gaspé Belt sequences of southern Québec and northwestern New England.

CONCLUSION

In this contribution the stratigraphic evolution of Cambrian-Ordovician volcanic and sedimentary units of the Saint-Victor synclinorium and the northern Vermont part of the Rowe-Hawley belt was synthesized into a revised tectonic model that accounts for along-strike lithostratigraphic variations and the geochronological record of both areas.

During the Taconian orogeny, the final stages of oceanic lithosphere emplacement onto Laurentia gave rise to the formation of a Llanvirn to Caradocian forearc basin. The Saint-Daniel Mélange and correlative units of the Rowe-Hawley belt, and the overlying rocks of the lower Magog Group and Bunker Hill sequence volcanic member were deposited onto a substratum made up of obducted ophiolites and metamorphosed continental margin rocks (for example, the Stowe Formation and the Bunker Hill sequence sedimentary member). The basin accumulated clastic debris shed from uplifted forearc highs of both Cambrian-Ordovician ophiolites and metamorphic rocks, and an outboard volcanic arc represented by the Ascot Complex. This period of syncollisional uplifting was synchronous with the interruption of southeastdirected subduction, as part of the subducted Laurentian margin and/or adjacent pre-Ordovician oceanic lithosphere delaminated and foundered into the mantle. Conformable volcanic flows, and their intrusive counterparts, occurring within the Saint-Daniel Mélange and correlative rocks of northern Vermont, were formed as a result of delamination and related asthenospheric upwelling and melting beneath the collision zone. Tuffs and volcaniclastic rocks of the Bunker Hill sequence volcanic member and lower Magog Group were then deposited unconformably over the Saint-Daniel Mélange as the outboard volcanic arc, represented by the Ascot Complex, was still active but vanishing and was being eroded. Onlapping turbidites of the Saint-Victor Formation record the erosion of the Humber zone thrust nappes as Taconian deformation progressed toward the foreland region. During the Silurian, the extensional collapse of the Taconian orogen resulted in the formation of the Connecticut Valley–Gaspé trough, which accumulated sediment eroded away from uplifted and previously assembled oceanic and continental rocks of Laurentian affinity throughout the Early Devonian. A detrital contribution from accreted peri-Gondwanan terrains is not clear from our data but may have been introduced into the basin during the Early Devonian (Tremblay and Pinet, 2005).

ACKNOWLEDGMENTS

This contribution is part of the first author's Ph. D. thesis, which was completed at Université du Québec à Montréal. Thanks are due to Michelle Laithier for help with drafting the figures, and to Jean David for introducing S. De Souza to the basics of sample preparation and U-Pb data interpretation. Andrew Hynes, Laurent Godin, Stéphane Faure, Bruce Idelman, and Paul Karabinos are gratefully acknowledged for providing comments and constructive reviews of earlier versions of the manuscript. This study was subsidized by the Natural Sciences and Engineering Research Council of Canada (NSERC) through an operating grant to A. Tremblay (PG-105699), and by the Fonds de Recherche du Québec–Nature et technologies (FQRNT), which provided a student grant to S. De Souza. Appendix 1

								ag	ge (Ma)			
Grain #	²⁰⁶ Ph	²⁰⁴ Ph	²⁰⁷ Ph	25	²⁰⁷ Ph	25	²⁰⁶ Ph	20	²⁰⁷ Ph	25	²⁰⁶ Ph	2 a disc
Gram //	(2023)	(2002)	206 DL	20	23511	20	23811	20	206ph	20	23811	20 0130
	(cps)	(cps)	PD		U		U		PD		U	
Sample 08M	[44 - Ward	e Volcanio	cs									
2	52496	97	0.07602	0.00092	2.10752	0.09427	0.20107	0.00866	1096	12	1181	46 -8.5
0	58004	121	0.05775	0.00355	0.50130	0.05094	0.07049	0.004/1	520	0/	439	28 10.2
0	52264	77	0.05407	0.00188	1.37250	0.02739	0.07072	0.00277	574 840	24	440 888	17 -10.4
11	44126	86	0.06521	0.00134	1.37200	0.08238	0.15338	0.00852	781	27	920	48 -191
12	58220	92	0.06818	0.00086	1.44336	0.05385	0.15353	0.00539	874	13	921	30 -5.7
13	130259	98	0.07171	0.00061	1.51105	0.06377	0.15282	0.00632	978	9	917	35 6.7
16	34261	97	0.06349	0.00185	1.33099	0.07306	0.15204	0.00707	725	31	912	39 -27.8
17	82019	119	0.07112	0.00094	1.49510	0.09281	0.15247	0.00925	961	14	915	52 5.1
24	93815	28	0.06772	0.00063	1.27177	0.05898	0.13621	0.00619	860	10	823	35 4.6
29	109446	43	0.08977	0.00136	2.60019	0.12855	0.21007	0.00988	1421	14	1229	52 14.8
32	135576	49	0.09025	0.00075	2.58533	0.16458	0.20777	0.01311	1431	8	1217	70 16.4
33	142949	44	0.09879	0.00075	3.41858	0.14896	0.25096	0.01077	1601	7	1443	55 11.0
34	201/80	85 76	0.07255	0.00057	1.48530	0.06436	0.14855	0.00033	1001	8	893	50 0.6
35	71036	83	0.07414	0.00220	1.97255	0.07878	0.19295	0.00931	867	16	805	45 -3.5
38	125785	81	0.007149	0.00105	1 44714	0.05538	0.14500	0.00552	972	7	883	31 98
39	67221	54	0.07556	0.00091	1.86283	0.08306	0.17880	0.00768	1084	12	1060	42 2.3
40	84942	92	0.06847	0.00115	1.44885	0.05852	0.15346	0.00564	883	17	920	31 -4.6
41	90181	90	0.06715	0.00070	1.37228	0.05353	0.14822	0.00557	842	11	891	31 -6.2
42	116498	109	0.06855	0.00078	1.35895	0.07208	0.14377	0.00745	885	12	866	42 2.3
43	38461	139	0.06320	0.00279	1.31451	0.0867	0.15084	0.00739	715	47	906	41 -28.6
48	63186	117	0.06865	0.00094	1.52888	0.06735	0.16152	0.00676	888	14	965	37 -9.3
51	31817	155	0.08627	0.00162	3.35040	0.14649	0.27198	0.01121	1344	18	1551	57 -17.3
52	144373	152	0.05723	0.00052	0.72321	0.03592	0.09165	0.00448	500	10	565	26 -13.5
Sample 0/B	UNKER -	Bunker F	fill sequence	e - sediment	ary member	0.00000	0 17257	0.00007	015	12	1022	45 20.0
2	99704	24	0.06628	0.00267	1.38618	0.09892	0.17357	0.00827	815	42	1032	45 -28.8
3	322275	34	0.00804	0.00278	1.74400	0.11067	0.10434	0.00850	1014	42	1137	43 -24.8
9	109696	16	0.06949	0.00287	1.74434	0.11962	0.19209	0.01088	913	42	1078	59 -19.6
10	206360	14	0.07046	0.00281	1.70463	0.10168	0.17546	0.00779	942	41	1042	43 -11.5
11	68189	111	0.07283	0.00293	1.87212	0.1226	0.18642	0.00963	1009	41	1102	52 -10.0
12	358057	92	0.10026	0.00393	4.03051	0.25775	0.29155	0.01473	1629	36	1649	73 -1.4
13	98418	69	0.07196	0.00284	1.72040	0.09766	0.17340	0.00707	985	40	1031	39 -5.1
15	122013	83	0.07406	0.00292	1.88111	0.10817	0.18422	0.00771	1043	40	1090	42 -4.9
16	135728	60	0.07294	0.00287	1.78741	0.10790	0.17772	0.00813	1012	40	1055	44 -4.5
17	22703	17	0.07252	0.00296	1.94373	0.12269	0.19440	0.00936	1001	41	1145	50 -15.8
18	245700	39	0.07431	0.00292	1.84225	0.10581	0.17980	0.00752	1050	40	1066	41 -1.7
19	22072	31	0.09548	0.00387	3.81096	0.26479	0.28950	0.01634	1557	38	1039	81 -7.5
20	30180	113	0.07504	0.00295	1.89070	0.11200	0.16551	0.00808	021	40	1063	44 -1.0
20	48907	103	0.06799	0.00287	1 47054	0.08851	0.15686	0.00706	868	41	939	39 -8.8
23	74877	104	0.05751	0.00230	0.76517	0.04898	0.09649	0.00482	511	44	594	28 -16.9
24	495141	117	0.09329	0.00366	3.30010	0.20918	0.25657	0.01278	1494	37	1472	65 1.6
25	103911	104	0.08039	0.00318	2.32639	0.14859	0.20988	0.01053	1207	39	1228	56 -2.0
26	137849	94	0.07169	0.00283	1.65517	0.10418	0.16744	0.00821	977	40	998	45 -2.3
27	50101	72	0.07077	0.00289	1.73268	0.10163	0.17756	0.00748	951	42	1054	41 -11.7
28	186909	92	0.07118	0.00280	1.58577	0.09903	0.16158	0.00783	963	40	966	43 -0.3
29	133576	88	0.07360	0.00290	1.87156	0.11059	0.18442	0.00811	1031	40	1091	44 -6.4
30	18/220	94	0.07012	0.00277	1.58599	0.08991	0.16405	0.00668	932	40	9/9	37 -5.5
31	32004	107	0.09931	0.00391	3.8/399	0.23034	0.28291	0.01201	960	27 43	1000	45 87
33	38176	86	0.07107	0.00297	1.46343	0.10787	0.17447	0.00650	835	43	949	36 -14.7
34	1563568	81	0.09483	0.00372	3.49485	0.20725	0.26728	0.01190	1525	37	1527	60 -0.2
37	51508	80	0.07234	0.00288	1.79266	0.10294	0.17973	0.00744	995	40	1066	41 -7.6
38	784114	91	0.10176	0.00399	4.08197	0.24738	0.29094	0.01345	1656	36	1646	67 0.7
39	401423	79	0.07290	0.00286	1.71216	0.10009	0.17034	0.00737	1011	40	1014	40 -0.3
40	538790	86	0.07262	0.00285	1.66712	0.09592	0.16650	0.00701	1003	40	993	39 1.1
41	223186	41	0.09985	0.00393	3.84670	0.21842	0.27940	0.01145	1621	37	1588	57 2.3
44	36722	69	0.06652	0.00278	1.52898	0.09133	0.16670	0.00712	823	44	994	39 -22.4
45	100937	62	0.09/93	0.00389	3.76865	0.23523	0.27910	0.01344	1585	37	1587	67 -0.1
40	92153	0	0.07258	0.00285	1.80411	0.09866	0.18148	0.00685	989	40	10/5	37 -9.5
48	150000	0	0.07306	0.00291	1.21039	0.11559	0.18909	0.00851	1016	40	1065	42 -53
51	322463	11	0.07346	0.00269	1.88341	0.13551	0.18595	0.01162	1027	36	1005	- <u>-</u>
52	68390	4	0.06765	0.00258	1.67250	0.12586	0.17932	0.01163	858	40	1063	63 -26.0
53	78836	5	0.09563	0.00349	3.87451	0.28559	0.29386	0.01881	1540	34	1661	93 -8.9
54	283254	2	0.08696	0.00311	2.89586	0.21093	0.24151	0.01532	1360	34	1395	79 -2.9
55	132133	2	0.07121	0.00258	1.81773	0.14373	0.18513	0.01301	963	37	1095	70 -14.8
56	113929	4	0.07121	0.00259	1.73321	0.12831	0.17654	0.01139	963	37	1048	62 -9.5
57	82560	5	0.06611	0.00254	1.53266	0.12400	0.16813	0.01197	810	40	1002	66 -25.6
59	101127	4	0.06760	0.00246	1.54055	0.11328	0.16528	0.01056	856	38	986	58 -16.3
00	1/3/88	/	00/235	0.00260	1 / 22/9	U 1500/	01/797	0.0114/	990	5/	1045	- C - C - C - C - C - C - C - C - C - C

LA-MC-ICP-MS U-Pb zircon data for rocks of the Ware Volcanics, the Bunker Hill sequence and the Magog and Saint-Francis groups

Appendix	1
(continued	l)

								ag	ge (Ma)				
Grain #	²⁰⁶ Pb	²⁰⁴ Pb	²⁰⁷ Pb	2σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	2σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	2σ	disc.
	(cps)	(cps)	²⁰⁶ Pb		²³⁵ U		²³⁸ U		²⁰⁶ Pb		²³⁸ U		
Sample 07B	UNKER -	Bunker H	fill sequence	e - sediment	tary member	0.10700	0.17520	0.01120	0.17	27	10.11	(2)	10.0
61	196262	40	0.07061	0.00257	1.70667	0.12708	0.17529	0.01139	946	37	1041	62	-10.9
63	774670	34	0.07324	0.00257	1.80165	0.12650	0.17841	0.01110	1021	36	1058	65	-4.0
64	244025	159	0.07758	0.00395	1.98416	0.16851	0.18550	0.01262	1136	51	1097	68	3.7
65	239115	14	0.07349	0.00263	1.76788	0.13772	0.17447	0.01207	1028	36	1037	66	-1.0
68	229769	8	0.08049	0.00288	2.30399	0.17017	0.20761	0.01341	1209	35	1216	71	-0.6
69	328778	1	0.07253	0.00259	1.68981	0.11939	0.16897	0.01030	1001	36	1006	57	-0.6
70	271656	5	0.07147	0.00257	1.62751	0.11704	0.16516	0.01028	971	37	985	57	-1.6
71	85121	85	0.06581	0.00246	1.42143	0.10329	0.15665	0.00976	800	39	938	54	-18.5
75	104082	47	0.0668/	0.00249	1.40505	0.10720	0.15889	0.01001	834	39	951	22 60	-15.1
76	146049	60	0.07244	0.00263	1 75297	0.12979	0.17550	0.01134	998	37	1042	62	-4.8
78	61251	51	0.06575	0.00265	1.53737	0.11493	0.16959	0.01067	798	42	1010	59	-28.6
79	154058	76	0.06797	0.00248	1.46927	0.11083	0.15679	0.01036	867	38	939	57	-8.8
80	67017	67	0.06729	0.00249	1.60364	0.11371	0.17285	0.01046	847	38	1028	57	-23.2
83	716296	83	0.07375	0.00263	1.71064	0.12506	0.16823	0.01074	1035	36	1002	59	3.4
84	196199	75	0.06974	0.00252	1.59746	0.11311	0.16614	0.01011	921	37	991	56	-8.2
85	433166	99	0.07343	0.00262	1.81122	0.12588	0.17890	0.0106/	1026	36	1061	58	-3.7
Sample 10B	455507 UNKER0	1 - Bunke	r Hill seque	0.00550 nce volcani	5.52610 2 member	0.20139	0.27179	0.01700	1311	54	1550	69	-2.9
1	99493	198	0.05698	0.00235	0 56998	0.03447	0.07255	0.00321	491	91	452	19	83
2	56279	41	0.05930	0.00101	0.57787	0.04647	0.07068	0.00556	578	37	440	33	24.6
3	78807	21	0.05619	0.00064	0.56614	0.02628	0.07307	0.00329	460	25	455	20	1.2
4	36488	47	0.07757	0.00163	1.64337	0.12563	0.15366	0.01129	1136	21	921	63	20.2
5	24795	46	0.08080	0.00222	1.83804	0.14608	0.16498	0.01231	1217	27	984	68	20.6
6	28701	83	0.08150	0.00188	1.95648	0.13412	0.17412	0.01124	1233	23	1035	61	17.4
7	135961	48	0.05640	0.00071	0.55233	0.02320	0.07102	0.00285	468	28	442	17	5.7
8	54854	20	0.05602	0.00098	0.55480	0.02457	0.07053	0.00292	458	39 25	440	18	3
10	14374	51	0.09330	0.00485	2 48285	0.20981	0.19300	0.01285	1494	49	1138	69	26
11	124688	66	0.05910	0.00129	0.57095	0.02876	0.07006	0.00318	571	47	437	19	24
12	40287	125	0.06083	0.00117	0.63037	0.04016	0.07516	0.00457	633	21	467	27	27
13	132180	39	0.05635	0.00056	0.55761	0.02316	0.07177	0.00290	466	22	447	17	4
14	119354	27	0.05594	0.00060	0.54403	0.02145	0.07054	0.00268	450	24	439	16	2
15	115299	52	0.05626	0.00060	0.53869	0.02213	0.06945	0.00275	462	24	433	17	7
10	80230	86	0.07592	0.00127	1.74749	0.15175	0.10095	0.01422	616	71	995 452	17	28
18	156912	168	0.18209	0.00199	12 70663	0.05055	0.50611	0.00278	2672	12	2640	158	1
20	124807	51	0.05601	0.00064	0.54070	0.02102	0.07001	0.00260	453	25	436	16	4
21	92635	56	0.05608	0.00061	0.54269	0.02291	0.07019	0.00286	455	24	437	17	4
22	128849	39	0.05568	0.00061	0.53583	0.02105	0.06980	0.00263	439	24	435	16	1
23	133266	59	0.05714	0.00088	0.55853	0.02409	0.07090	0.00286	497	34	442	17	12
24	104891	38	0.05566	0.00057	0.53661	0.02306	0.06992	0.00292	439	23	436	18	1
25	174459	03	0.03640	0.00003	0.54905	0.02275	0.07007	0.00281	408	20	440	16	5
27	115874	87	0.05714	0.00091	0.56157	0.02343	0.07128	0.00275	497	35	444	17	ň
28	63863	54	0.05597	0.00075	0.53300	0.02184	0.06907	0.00268	451	30	431	16	5
29	39738	5	0.08611	0.00223	1.99796	0.13819	0.16829	0.01079	1341	25	1003	59	27
31	82248	0	0.07764	0.00132	1.76770	0.11223	0.16513	0.01010	1138	17	985	56	14
33	57170	1	0.07749	0.00150	1.55280	0.10238	0.14532	0.00916	1134	19	875	51	24
34	60956	1	0.18684	0.00280	12.21891	0.77421	0.47432	0.02920	2/15	12	2502	126	9
30	178208	75	0.09010	0.00136	2.85058	0.18722	0.22930	0.01466	453	23	451	17	0
38	80563	69	0.05721	0.00097	0.57284	0.02674	0.07262	0.00316	500	37	452	19	10
40	175711	0	0.07428	0.00115	1.47951	0.11682	0.14446	0.01119	1049	16	870	63	18
41	39701	176	0.08301	0.00153	1.81761	0.12828	0.15880	0.01082	1269	18	950	60	27
42	71474	198	0.07833	0.00132	1.68128	0.13418	0.15566	0.01214	1155	17	933	67	21
43	219264	145	0.07397	0.00112	1.59492	0.11082	0.15638	0.01060	1041	15	937	59	11
44	216658	149	0.09632	0.00148	3.13815	0.20345	0.23630	0.01489	1554	14	1367	77	13
45	81213	144	0.07/21	0.00138	1.58462	0.09468	0.14880	0.00848	1127	18	895	4/	10
40	52136	66	0.07517	0.00133	0.51963	0.02107	0.06737	0.01094	450	28	420	16	7
48	102968	169	0.10236	0.00160	3.70937	0.25383	0.26282	0.01751	1667	14	1504	89	11
49	43018	137	0.09255	0.00208	2.52148	0.18487	0.19760	0.01379	1479	21	1162	74	23
51	40722	153	0.08573	0.00189	1.93671	0.12817	0.16384	0.01023	1332	21	978	56	29
52	104235	183	0.07652	0.00131	1.75146	0.13554	0.16601	0.01253	1109	17	990	69	12
53	29839	161	0.10835	0.00244	3.73492	0.28779	0.25001	0.01842	1772	21	1439	94	21
54	76966	179	0.09359	0.00154	2.93601	0.20794	0.22753	0.01567	1500	16	1322	82	13
50 50	1/897	150	0.10723	0.00315	3.33864 2.72042	0.26186	0.22717	0.01641	1/53	27	1320	86	27
50 60	57661	04 QQ	0.09052	0.00150	2.73943	0.10020	0.21949	0.01291	1437	14	978	50	20
61	107731	161	0.07600	0.00167	1.64308	0.10724	0.15681	0.00964	1095	22	939	53	15
62	138808	87	0.07471	0.00117	1.64501	0.10359	0.15969	0.00974	1061	16	955	54	11
63	35311	95	0.08393	0.00203	1.84968	0.11942	0.15984	0.00957	1291	24	956	53	28

					(*							
~ • •	206-4	204-4	207-4		207-4		206-4	ag	<u>ge (Ma)</u>		206-4	
Grain #	²⁰⁰ Pb	²⁰⁴ Pb	$\frac{207}{206}$ Pb	2σ	$\frac{207}{225}$ Pb	2σ	$\frac{200}{220}$ Pb	2σ	$\frac{207}{206}$ Pb	2σ	$\frac{200}{220}$ Pb	2σ disc.
	(cps)	(cps)	²⁰⁰ Pb		²⁵⁵ U		²⁵ °U		²⁰⁰ Pb		²³⁰ U	
Sample 10B	UNKER0	1 - Bunker	Hill seque	nce volcanio	c member	0 22222	0.26268	0.01611	1651	14	1500	82 10
64 65	42198	98 90	0.10148	0.00155	1.64040	0.23223	0.26568	0.00959	1195	14	895	54 27
67	23267	109	0.14732	0.00294	7.35248	0.53305	0.36196	0.02523	2315	17	1991	118 16
68	66870	140	0.07869	0.00143	1.75535	0.10939	0.16178	0.00965	1164	18	967	53 18
69 72	324907	132	0.07519	0.00110	1.75054	0.10926	0.16886	0.01025	1074	15 25	929	56 7
74	14676	53	0.12838	0.00493	4.93332	0.35721	0.27871	0.01711	2076	34	1585	86 27
78	38988	40	0.08477	0.00176	1.88215	0.13582	0.16104	0.01113	1310	20	963	62 29
79	86252	44	0.07614	0.00137	1.59125	0.10399	0.15157	0.00952	1099	18	910	53 18
82	114198	68	0.18894	0.00273	1.65052	0.13130	0.15655	0.03342	1107	17	938	67 16
83	80508	85	0.19694	0.00296	12.46495	0.87478	0.45905	0.03147	2801	12	2435	138 16
85	194771	128	0.07515	0.00113	1.64858	0.12863	0.15910	0.01218	1073	15	952	67 12
87 88	59997	55 54	0.10101	0.00151	1 72088	0.24222	0.26451	0.01085	1034	14	941	51 22
90	107390	50	0.07626	0.00136	1.59238	0.10645	0.15145	0.00976	1102	18	909	54 19
92	243046	69	0.18264	0.00263	11.85198	0.81979	0.47064	0.03184	2677	12	2486	138 9
93	10419	63	0.10736	0.00337	2.40617	0.16620	0.16255	0.01000	1755	29	971	55 48
97	26700	41	0.14286	0.00265	7.16060	0.47108	0.36353	0.02079	2262	16	1999	102 9
101	148658	28	0.07647	0.00115	1.67101	0.10408	0.15848	0.00958	1107	15	948	53 15
103	197894	32	0.07368	0.00113	1.63734	0.11843	0.16118	0.01139	1033	15	963	63 7
106	583945	10	0.10074	0.00131	3.34382 4.85861	0.22387	0.25514	0.01577	1825	12	1465	81 12
108	11826	13	0.09154	0.00308	2.33558	0.14724	0.18504	0.00986	1458	32	1094	53 27
109	37562	8	0.07877	0.00149	1.62015	0.12444	0.14918	0.01111	1166	19	896	62 25
110	10378	7	0.09487	0.00329	2.51522	0.16321	0.19228	0.01055	1526	33	1134	57 28 52 29
112	203062	5	0.07440	0.000218	1.71282	0.08689	0.16697	0.00937	1052	13	995	45 6
113	322931	4	0.18529	0.00236	12.91283	0.70512	0.50545	0.02684	2701	11	2637	114 3
114	82128	4	0.10088	0.00137	3.63171	0.17982	0.26109	0.01243	1640	13	1495	63 10
115	16924	48	0.09377	0.00352	1.83281	0.17828	0.19066	0.01134	1018	33 22	1076	62 50 48 -6
117	113114	52	0.07094	0.00100	1.47517	0.07629	0.15082	0.00750	956	14	906	42 6
118	13993	45	0.09620	0.00209	3.76412	0.21633	0.28379	0.01510	1552	20	1610	75 -4
119	436312	48	0.16/6/	0.00213	9.73390	0.56446	0.42104	0.02382	2535	11	2265	107 13 56 0
121	643564	42	0.16475	0.00215	8.10778	0.59116	0.35692	0.02560	2505	11	1968	120 25
122	104745	16	0.20363	0.00262	14.10875	0.85271	0.50252	0.02968	2855	10	2625	126 10
124	24196	23	0.09911	0.00132	3.57305	0.20905	0.26146	0.01489	1608	12	1497	76 8 52 4
125	52872	10	0.08317	0.00113	2.34707	0.16271	0.20468	0.00932	1273	14	1200	74 6
127	28286	29	0.06864	0.00131	1.47704	0.08212	0.15606	0.00815	888	20	935	45 - 6
128	512182	12	0.11228	0.00142	4.98176	0.34522	0.32179	0.02192	1837	11	1798	106 2
129	92647	5	0.07374	0.00103	3.02502	0.08804	0.23757	0.00833	1475	14	1374	62 8
Sample 09S	V01 - Sair	nt-Victor F	ormation									
1	59193	35	0.08655	0.00169	2.54752	0.15751	0.21347	0.01253	1351	38	1247	66 8
2	23090	29 36	0.06876	0.00184	1.63054	0.13242	0.17199	0.01318	892	22 98	1023	72 -16 67 2
4	34357	14	0.09675	0.00122	3.81820	0.22835	0.28624	0.01223	1562	24	1623	83 -4
5	165848	17	0.07493	0.00063	1.79540	0.11579	0.17378	0.01111	1067	17	1033	61 3
6 7	241400	25	0.18652	0.00132	13.11043	0.93625	0.50979	0.03623	2712	12	2656	153 3
8	17785	8	0.06859	0.00124	1.70016	0.10624	0.17977	0.01002	886	51	1066	56 -22
9	44198	14	0.08329	0.00138	2.41414	0.19805	0.21023	0.01689	1276	32	1230	89 4
10	353013	12	0.18923	0.00163	12.56189	0.82870	0.48146	0.03149	2736	14	2534	136 9
12	154151	7	0.28094	0.00293	1.67629	0.12253	0.18091	0.01230	844	56	1072	67 -29
14	40651	13	0.09761	0.00121	3.55784	0.19896	0.26435	0.01441	1579	23	1512	73 5
15	155586	15	0.07256	0.00066	1.62668	0.09785	0.16258	0.00967	1002	18	971	53 3
16 17	24028	21	0.07380	0.00200	2.64/50	0.16189 0.13149	0.24532	0.01363	1154	51 43	1414	70 -25 66 -7
18	17405	22	0.07345	0.00322	1.80389	0.15223	0.17811	0.01284	1027	89	1057	70 -3
19	9167	13	0.07424	0.00558	1.86724	0.20109	0.18241	0.01408	1048	151	1080	76 -3
20	1182326	26	0.17659	0.00123	11.37709	0.81571	0.46726	0.03334	2621	12	2472	145 7
21	54064	49 46	0.07013	0.00292	2.59932	0.10729	0.13893	0.00890	1333	28	1281	49 <u>-</u> 2 62 4
23	150238	43	0.20052	0.00148	14.99191	0.86809	0.54225	0.03114	2830	12	2793	129 2
24	976571	84	0.11332	0.00076	5.18280	0.30655	0.33170	0.01949	1853	12	1847	94 0
25 26	27221	03 59	0.07770	0.00068	2.04/08	0.11110	0.19109	0.01023	1139	18 37	1127	55 I 63 I
27	55836	65	0.07915	0.00101	2.09680	0.12612	0.19214	0.01129	1176	25	1133	61 4
28	261129	61	0.08827	0.00070	2.83093	0.15961	0.23260	0.01298	1388	15	1348	68 3
29	22808	8U	0.07408	0.00117	1./4300	0.112/2	0.1/091	0.01070	1044	32	1017	39 3

Appendix 1 (continued)

Appendix	1
(continued	l)

								ag	e (Ma)			
Grain #	²⁰⁶ Pb	²⁰⁴ Pb	²⁰⁷ Pb	2σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	2σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	$\frac{1}{2\sigma}$ disc.
	(cps)	(cps)	²⁰⁶ Pb		²³⁵ U		²³⁸ U		²⁰⁶ Pb		²³⁸ U	
Sample 09S	V01 - Sain	t-Victor F	Formation									
30	158044	67	0.10776	0.00127	4.30896	0.25146	0.29002	0.01658	1762	22	1642	82 8
31	45484	76	0.07474	0.00105	1.70300	0.10498	0.17078	0.00990	1062	28	1018	54 4
33	102827	82	0.07371	0.00134	1.75507	0.10303	0.17078	0.00971	1054	10	1010	52 2
35	34151	71	0.07653	0.00106	2.01717	0.11654	0.19117	0.01072	1109	28	1128	58 -2
36	57536	85	0.07438	0.00095	1.75402	0.09911	0.17103	0.00941	1052	26	1018	52 4
37	31783	60	0.07257	0.00092	1.66371	0.10287	0.16628	0.01006	1002	26	992	55 1
38	74422	65	0.10361	0.00105	3.97868	0.23398	0.27851	0.01613	1690	19	1584	81 7
39	67351	76	0.08252	0.00100	2.34338	0.15271	0.20597	0.01319	1258	24	1207	70 4
40	52924	71	0.09046	0.00103	2.95989	0.19238	0.23/31	0.01519	1435	22	1373	79 5
41	11835	64	0.11320	0.00097	2 04301	0.30609	0.51952	0.01942	1124	84	1133	94 4 57 _1
43	121166	80	0.07533	0.00069	1.79255	0.10342	0.17259	0.00983	1077	18	1026	54 5
44	651023	75	0.11343	0.00077	5.02819	0.35433	0.32149	0.02255	1855	12	1797	109 4
45	165881	83	0.11453	0.00082	5.11032	0.29683	0.32361	0.01865	1873	13	1807	90 4
46	15338	101	0.08914	0.00378	2.40210	0.17807	0.19545	0.01188	1407	81	1151	64 20
47	191919	120	0.11584	0.00114	5.10203	0.27571	0.31943	0.01697	1893	18	1787	82 6
48	82841	93	0.08504	0.00084	2.43923	0.14080	0.20804	0.01183	1316	19	1218	63 8
49 50	213102	127	0.09427	0.00108	3.24705	0.21803	0.24981	0.01033	2762	12	2704	124 3
51	62352	107	0.08939	0.00077	2.92883	0.16887	0.23763	0.01355	1413	17	1374	70 3
52	24604	106	0.07202	0.00109	1.57598	0.09865	0.15871	0.00964	987	31	950	53 4
53	208490	104	0.18739	0.00136	13.15129	0.73260	0.50901	0.02811	2719	12	2652	119 3
54	11850	102	0.07442	0.00151	1.85363	0.11465	0.18064	0.01055	1053	41	1070	57 -2
55	100080	122	0.19187	0.00141	13.15731	0.75594	0.49734	0.02834	2758	12	2602	121 7
56	75519	122	0.08540	0.00076	2.60687	0.15972	0.22139	0.01342	1325	17	1289	70 3
58	24060	110	0.07429	0.00273	1.88173	0.12800	0.18571	0.01059	072	/4	003	57 -4 58 -2
59	27830	117	0.07610	0.00126	1.87503	0.11254	0.17871	0.01031	1098	33	1060	56 4
60	7971	121	0.07717	0.00239	2.05199	0.12830	0.19284	0.01048	1126	62	1137	56 -1
61	425912	81	0.19215	0.00130	13.50325	0.77048	0.50967	0.02888	2761	11	2655	122 5
62	99219	62	0.18899	0.00135	12.87859	0.73601	0.49424	0.02803	2733	12	2589	120 6
63	81270	61	0.09993	0.00085	3.81269	0.22170	0.27672	0.01592	1623	16	1575	80 3
64	61409	80	0.07474	0.00066	1.76426	0.10496	0.1/121	0.0100/	1061	18	1019	55 4 70 6
66	906221	74	0.09199	0.00093	12 60496	0.72763	0.24017	0.01331	2663	19	2635	123 1
67	190036	74	0.07556	0.00056	1.84302	0.10124	0.17691	0.00963	1083	15	1050	53 3
68	25760	41	0.06833	0.00113	1.51176	0.08907	0.16046	0.00907	879	34	959	50 -10
69	170425	213	0.07908	0.00074	2.07512	0.11867	0.19031	0.01074	1174	19	1123	58 5
70	92425	69	0.07611	0.00069	1.87269	0.10981	0.17845	0.01034	1098	18	1058	56 4
71	54790	43	0.08455	0.00088	2.59050	0.15125	0.22221	0.01277	1305	20	1294	67 1
72	81589	42	0.07272	0.00036	3.00738	0.08797	0.16127	0.00869	1425	10	1399	48 5
74	26279	26	0.07102	0.00116	1.63901	0.09611	0.16737	0.00943	958	33	998	52 -4
78	107939	47	0.08185	0.00072	2.25508	0.14364	0.19982	0.01260	1242	17	1174	67 6
76	35086	40	0.07187	0.00089	1.52286	0.09885	0.15368	0.00979	982	25	922	54 7
77	19314	44	0.07025	0.00128	1.60996	0.09670	0.16621	0.00951	936	37	991	52 -6
78	55243	43	0.08816	0.00088	2.66896	0.14954	0.21957	0.01210	1386	19	1280	64 8
/9	21983	34	0.08465	0.00085	2.39114	0.12983	0.20486	0.01093	1308	19	1201	58 9 54 7
81	349459	25	0.11373	0.00078	4.81231	0.27042	0.30690	0.01712	1860	12	1725	84 8
82	342365	26	0.11329	0.00079	4.73762	0.27126	0.30330	0.01724	1853	13	1708	85 9
83	77850	46	0.07129	0.00068	1.48662	0.08317	0.15124	0.00834	966	19	908	47 6
84	248422	40	0.07352	0.00054	1.62410	0.09826	0.16022	0.00962	1028	15	958	53 7
85	20685	27	0.12833	0.00135	6.53766	0.43117	0.36948	0.02406	2075	18	2027	112 3
Sample 098	V02 - Sam	t-Victor F	ormation	0.00110	0.42020	0.01801	0.05064	0.00225	204	52	272	14 20
2	41568	52	0.03221	0.00119	3 13680	0.01891	0.03904	0.00225	1610	32	1331	42 19
3	318474	58	0.07258	0.00100	1.51230	0.05523	0.15113	0.00511	1002	28	907	29 10
4	10248	56	0.06755	0.00214	1.39394	0.06583	0.14966	0.00524	855	66	899	29 -6
5	41297	74	0.05507	0.00120	0.51728	0.02173	0.06812	0.00244	415	49	425	15 -2
6	52960	78	0.07214	0.00188	1.30342	0.08667	0.13105	0.00802	990	53	794	46 21
7	69341	58	0.05451	0.00058	0.50959	0.02133	0.06780	0.00275	392	24	423	17 -8
9	10/422	88	0.11610	0.00178	4.24839	0.21181	0.26540	0.01259	1897	28	1517	64 22
10	221688	87	0.00780	0.00123	1.35366	0.03311	0.13298	0.00337	1037	30	805	134 24
12	12300	64	0.08232	0.00285	2.31363	0.39519	0.20385	0.03410	1253	68	1196	180 5
13	67017	46	0.05382	0.00073	0.51728	0.01998	0.06971	0.00252	363	31	434	15 -20
14	36608	84	0.10115	0.00207	3.37715	0.57800	0.24214	0.04115	1645	38	1398	210 17
15	67317	29	0.05402	0.00071	0.51683	0.01870	0.06939	0.00234	372	30	432	14 -17
16	59565	67	0.09892	0.00144	3.26468	0.55500	0.23937	0.04054	1604	27	1383	208 15
1/	30028	56 42	0.07065	0.00145	1.43676	0.24133	0.14750	0.02459	947 391	42 54	887	15/ 7
10	58649	42	0.05400	0.00150	0.51504	0.02202	0.00097	0.00254	371	31	430	15 -13
19	58640	48	0.05400	0.00074	0.51593	0.01992	0.06929	0.00250	371	31	432	15 -17

								as	e (Ma)			
Grain #	²⁰⁶ Pb	²⁰⁴ Pb	²⁰⁷ Pb	2σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	<u>2</u> σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	$\frac{1}{2\sigma}$ disc.
	(cps)	(cps)	²⁰⁶ Pb	20	²³⁵ U	20	²³⁸ U	20	²⁰⁶ Pb	20	²³⁸ U	20
Sample 09S	V02 - Sair	nt-Victor F	Formation									
20	81858	69	0.11342	0.00172	4.11349	0.69460	0.26303	0.04424	1855	27	1505	222 21
21	68623	68 72	0.05694	0.00148	0.54980	0.02503	0.07003	0.00262	489	57	436	16 11
22	37807	75	0.08229	0.00127	2.32095	0.17934	0.20450	0.01549	300	30 40	407	82 5 30 5
25	13643	63	0.05440	0.00090	1 64933	0.12981	0.00323	0.00301	847	65	1055	70 -27
27	26973	85	0.05629	0.00127	0.50874	0.03971	0.06555	0.00490	464	50	409	30 12
28	131509	74	0.07223	0.00106	1.53807	0.11564	0.15445	0.01139	992	30	926	63 7
29	58159	56	0.05624	0.00100	0.53109	0.02056	0.06849	0.00235	462	40	427	14 8
30	25735	77	0.05345	0.00158	0.50125	0.04128	0.06802	0.00523	348	67	424	31 -23
31	33548	95 70	0.07078	0.00145	1.66908	0.25471	0.17103	0.02586	951	42	1018	141 -8
32	94906	78	0.07220	0.00104	0.50401	0.25988	0.1/094	0.02597	295	29	1017	141 -5
34	66980	88	0.07381	0.00075	1 71467	0.26082	0.16848	0.002546	1036	35	1004	139 3
35	28980	112	0.07410	0.00120	1.61373	0.24978	0.15796	0.02415	1044	49	945	133 10
36	54000	37	0.05351	0.00114	0.49636	0.01986	0.06727	0.00227	351	48	420	14 -20
37	37931	98	0.07224	0.00125	1.75355	0.26411	0.17605	0.02634	993	35	1045	143 -6
39	78701	80	0.07261	0.00113	1.69946	0.25692	0.16976	0.02553	1003	32	1011	139 -1
41	65246	48	0.08384	0.00142	2.45143	0.25701	0.21207	0.02194	1289	33	1240	116 4
42	45262	23 47	0.07201	0.00130	1.00831	0.17314	0.16802	0.01717	980	37	011	94 -2 86 5
43	64539	51	0.00303	0.00114	1 58044	0.16382	0.15955	0.01544	981	33	954	90 3
45	138238	63	0.05554	0.00060	0.50643	0.02082	0.06613	0.00262	434	24	413	16 5
46	55111	51	0.09101	0.00137	2.94837	0.31024	0.23495	0.02447	1447	29	1360	126 7
47	127955	71	0.07261	0.00112	1.60381	0.16561	0.16019	0.01636	1003	31	958	90 5
48	55584	72	0.05604	0.00131	0.53741	0.02239	0.06955	0.00240	454	52	433	14 5
49	85751	75	0.05460	0.00070	0.51715	0.01901	0.06870	0.00237	396	29	428	14 -9
50	44062	50	0.05316	0.00131	0.48218	0.05177	0.06578	0.00687	336	56	411	41 -23
51	3/381	/0	0.08105	0.00450	0.47422	0.21440	0.17191	0.01664	344	36	1025	91 18 37 18
53	40314	60	0.05355	0.00035	0.50114	0.02241	0.06646	0.00242	399	58	415	15 -4
54	15145	43	0.05390	0.00449	0.51559	0.06416	0.06938	0.00641	367	188	432	39 -19
55	22297	68	0.05441	0.00337	0.48625	0.03570	0.06482	0.00255	388	139	405	15 -5
56	66833	95	0.05569	0.00198	0.51697	0.02595	0.06733	0.00238	440	79	420	14 5
58	17542	64	0.07791	0.00515	1.95753	0.22157	0.18222	0.01675	1145	131	1079	91 6
59	41116	47	0.07324	0.00160	1.66857	0.15628	0.16523	0.01505	1021	44	986	83 4
60	51574 14574	38 46	0.07410	0.00132	1.05307	0.15398	0.16179	0.01479	860	30	967	82 8 27 20
62	32389	38	0.05366	0.00287	0.49618	0.01676	0.16424	0.00166	357	52	418	10 -18
64	22469	28	0.06849	0.00135	1.54099	0.04819	0.16318	0.00395	883	41	974	22 -11
65	25123	40	0.07129	0.00178	1.93033	0.06365	0.19638	0.00424	966	51	1156	23 -22
67	34778	198	0.05757	0.00332	0.52521	0.03840	0.06617	0.00297	513	127	413	18 20
68	37582	46	0.07438	0.00202	1.72468	0.05927	0.16817	0.00354	1052	55	1002	20 5
69	88669	37	0.05572	0.00105	0.59390	0.01889	0.07731	0.00198	441	42	480	12 -9
70	65031	33 47	0.06778	0.00136	2 31556	0.03081	0.17710	0.00554	1247	40	1200	19 -24 68 4
72	66805	60	0.05512	0.00096	0.48865	0.02618	0.06430	0.00326	417	39	402	20 4
73	46113	59	0.05274	0.00106	0.45988	0.02202	0.06324	0.00275	318	46	395	17 -25
74	104009	97	0.05638	0.00120	0.52602	0.03015	0.06767	0.00360	467	47	422	22 10
75	32451	61	0.05454	0.00249	0.55484	0.03804	0.07378	0.00378	394	102	459	23 -17
76	353921	75	0.07894	0.00114	2.17683	0.12033	0.19999	0.01067	1171	29	1175	57 0
/9	96/13	5/	0.07165	0.001/1	1.59846	0.09582	0.16181	0.00890	976	49	967	49 1
81	117030	37	0.05405	0.00033	0.31428	0.01937	0.00901	0.00230	792	34	430 642	53 20
82	64313	68	0.05393	0.00071	0.50595	0.01917	0.06804	0.00242	368	30	424	15 -16
83	35631	31	0.07160	0.00145	1.64387	0.09257	0.16652	0.00875	975	41	993	48 -2
84	75621	25	0.09983	0.00149	3.59115	0.20379	0.26089	0.01428	1621	28	1494	73 9
85	129947	40	0.07397	0.00113	1.84332	0.11975	0.18075	0.01141	1041	31	1071	62 -3
Sample 09M	IILAN01 ·	- Milan m	ember	0.00000	1 (1401	0.00457	0 17221	0.00722	0.00	22	1025	40 20
4	48218	10	0.06797	0.00208	1.61491	0.08457	0.17231	0.00/33	868	32	1025	40 -20
11	296610	51	0.00439	0.00190	1.50675	0.00499	0.13417	0.00374	1670	23	924	50 -24
12	44914	35	0.07954	0.00259	2 35102	0.17169	0.20323	0.00998	1186	32	1252	74 -6
18	106628	42	0.05385	0.00142	0.50098	0.02210	0.06747	0.00239	365	30	421	14 -16
19	44259	43	0.06801	0.00206	1.51794	0.06966	0.16188	0.00558	869	31	967	31 -12
20	95147	25	0.10008	0.00256	3.79217	0.18058	0.27481	0.01104	1626	24	1565	56 4
21	163971	42	0.07696	0.00195	1.95923	0.10535	0.18465	0.00875	1120	25	1092	47 3
26	57092	30	0.06884	0.00203	1.43466	0.07576	0.15115	0.00662	894	30	907	37 -2
2/	113987	51 49	0.07177	0.00186	1.54332	0.07926	0.15595	0.00691	9/9	26	934	58 5 48 16
29 30	50714 65406	+0 52	0.07445	0.00218	2.11174	0.11009	0.20372	0.00893	1034	29 26	1326	40 -10
32	45752	47	0.06791	0.00211	1.53355	0.07378	0.16377	0.00602	866	32	978	33 -14
33	58553	63	0.09858	0.00273	3.83108	0.21251	0.28186	0.01355	1597	26	1601	68 0
34	75633	58	0.09989	0.00261	3.74227	0.22601	0.27171	0.01480	1622	24	1549	75 5
35	28980	112	0.07410	0.00180	1.61373	0.24978	0.15796	0.02415	1044	49	945	133 10
36	54000	37	0.05351	0.00114	0.49636	0.01986	0.06727	0.00227	351	48	420	14 -20

Appendix 1 (continued)

Appendix 1	
(continued)	

								ag	ge (Ma)				
Grain #	²⁰⁶ Pb	²⁰⁴ Pb	²⁰⁷ Pb	2σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	2σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	2σ	disc.
	(cps)	(cps)	²⁰⁶ Pb		²³⁵ U		²³⁸ U		²⁰⁶ Pb		²³⁸ U		
Sample 09M	IILAN01 -	Milan m	ember	0.00125	1 75255	0.26411	0 17605	0.02624	002	25	1045	142	6
39	78701	98 80	0.07224	0.00123	1.69946	0.26411	0.17803	0.02654	1003	32	1043	145	-0 -1
41	65246	48	0.08384	0.00142	2.45143	0.25701	0.21207	0.02194	1289	33	1240	116	4
42	45262	53	0.07201	0.00130	1.66831	0.17314	0.16802	0.01717	986	37	1001	94	-2
43	36835	47	0.06805	0.00114	1.42344	0.14684	0.15172	0.01544	870	35	911	86	-5
44 45	645 <i>3</i> 9 138238	51 63	0.07184	0.00116	1.58044	0.16382	0.15955	0.01633	981 434	33 24	954 413	90 16	5
46	55111	51	0.09101	0.00137	2.94837	0.31024	0.23495	0.00202	1447	29	1360	126	7
47	127955	71	0.07261	0.00112	1.60381	0.16561	0.16019	0.01636	1003	31	958	90	5
48	55584	72	0.05604	0.00131	0.53741	0.02239	0.06955	0.00240	454	52	433	14	5
49	85751	75	0.05460	0.00070	0.51715	0.01901	0.06870	0.00237	396	29	428	14	-9
50	44062 37581	50 70	0.05316	0.00131	0.48218	0.05177	0.06578	0.00687	1223	50 100	411	41	-23
52	45513	47	0.05335	0.00085	0.47422	0.04571	0.06447	0.00613	344	36	403	37	-18
53	40314	60	0.05469	0.00141	0.50114	0.02241	0.06646	0.00242	399	58	415	15	-4
54	15145	43	0.05390	0.00449	0.51559	0.06416	0.06938	0.00641	367	188	432	39	-19
55	22297	68	0.05441	0.00337	0.48625	0.03570	0.06482	0.00255	388	139	405	15	-5
56	66833	95	0.05569	0.00198	0.51697	0.02595	0.06733	0.00238	440	121	420	14	5
28 59	41116	04 47	0.07791	0.00313	1.95755	0.22137	0.16523	0.01675	1021	44	986	83	4
60	51574	38	0.07410	0.00132	1.65307	0.15398	0.16179	0.01303	1044	36	967	82	8
61	14574	46	0.06771	0.00287	1.71992	0.08676	0.18424	0.00503	860	88	1090	27	-29
62	32389	38	0.05366	0.00123	0.49618	0.01676	0.06706	0.00166	357	52	418	10	-18
64	22469	28	0.06849	0.00135	1.54099	0.04819	0.16318	0.00395	883	41	974	22	-11
67	25123	40	0.07129	0.00178	1.93033	0.06365	0.19638	0.00424	966 513	51 127	413	25	-22
68	37582	46	0.07438	0.00202	1.72468	0.05927	0.16817	0.00257	1052	55	1002	20	5
69	88669	37	0.05572	0.00105	0.59390	0.01889	0.07731	0.00198	441	42	480	12	-9
70	31319	35	0.06778	0.00158	1.65567	0.05081	0.17716	0.00354	862	48	1051	19	-24
71	65931	47	0.08206	0.00136	2.31556	0.14984	0.20465	0.01280	1247	32	1200	68	4
72	66805	60 50	0.05512	0.00096	0.48865	0.02618	0.06430	0.00326	417	39	402	20	4
73 74	104009	97	0.05638	0.00100	0.43988	0.02202	0.06767	0.00275	467	40	422	22	10
75	32451	61	0.05454	0.00249	0.55484	0.03804	0.07378	0.00378	394	102	459	23	-17
76	353921	75	0.07894	0.00114	2.17683	0.12033	0.19999	0.01067	1171	29	1175	57	0
79	96713	57	0.07165	0.00171	1.59846	0.09582	0.16181	0.00890	976	49	967	49	1
80	69167	76	0.05405	0.00055	0.51428	0.01937	0.06901	0.00250	373	23	430	15	-16
81	64313	57	0.06555	0.00108	0.94641	0.08323	0.10471	0.00905	368	30	042 424	33 15	-16
83	35631	31	0.07160	0.00145	1.64387	0.09257	0.16652	0.00242	975	41	993	48	-2
84	75621	25	0.09983	0.00149	3.59115	0.20379	0.26089	0.01428	1621	28	1494	73	9
85	129947	40	0.07397	0.00113	1.84332	0.11975	0.18075	0.01141	1041	31	1071	62	-3
Sample 09M	IILAN01 -	Milan m	ember	0.00000	1 (1 (0))	0.00457	0 15001	0.00722	0.40	22	1025	10	20
4	48218	10	0.06/9/	0.00208	1.61491	0.08457	0.17231	0.00733	868	32	024	40	-20
11	296610	51	0.10253	0.00257	4.00416	0.17315	0.28325	0.00998	1670	23	1608	50	4
12	44914	35	0.07954	0.00259	2.35102	0.17169	0.21436	0.01402	1186	32	1252	74	-6
18	106628	42	0.05385	0.00142	0.50098	0.02210	0.06747	0.00239	365	30	421	14	-16
19	44259	43	0.06801	0.00206	1.51794	0.06966	0.16188	0.00558	869	31	967	31	-12
20	95147	25	0.10008	0.00256	3.79217	0.18058	0.27481	0.01104	1626	24	1565	56	4
21	57092	42 30	0.07696	0.00193	1.93925	0.10555	0.18403	0.00873	894	30	907	37	_2
27	113987	51	0.07177	0.00186	1.54332	0.07926	0.15595	0.00691	979	26	934	38	5
29	30714	48	0.07445	0.00218	2.11174	0.11069	0.20572	0.00895	1054	29	1206	48	-16
30	65406	52	0.08818	0.00242	2.77726	0.12364	0.22843	0.00800	1386	26	1326	42	5
32	45752	47	0.06791	0.00211	1.53355	0.07378	0.16377	0.00602	866	32	978	33	-14
33	58553 75633	63 58	0.09858	0.00273	3.83108	0.21251	0.28186	0.01355	1622	26	1601	68 75	0
36	54753	56	0.07094	0.00201	1.75280	0.08569	0.17919	0.00715	956	29	1063	39	-12
38	51289	77	0.06919	0.00197	1.55639	0.06831	0.16315	0.00545	904	29	974	30	-8
43	163876	66	0.05471	0.00140	0.52415	0.02386	0.06948	0.00262	400	29	433	16	-8
45	102350	70	0.07224	0.00192	1.72275	0.08627	0.17296	0.00734	993	27	1028	40	-4
46	148705	73	0.16671	0.00418	11.06694	0.65409	0.48146	0.02577	2525	21	2534	111	0
47	44702 56174	39 49	0.08477	0.00245	2.74620	0.14691	0.23493	0.01058	1813	28	1766	33 76	-4
49	544493	63	0.07606	0.00191	1.95241	0.09755	0.18618	0.00804	1097	25	1101	44	0
54	44311	11	0.06625	0.00205	1.47208	0.08269	0.16114	0.00756	814	32	963	42	-20
56	83238	23	0.20171	0.00511	15.80533	1.03613	0.56831	0.03436	2840	21	2901	140	-3
57	143060	18	0.19755	0.00495	14.50804	0.73413	0.53264	0.02342	2806	20	2753	98	2
59 60	85099	14	0.08299	0.00227	2.35490	0.11071	0.20579	0.00787	1269	27	1206	42	5
61	044 <i>32</i> 29097	54	0.07902	0.00210	0.47520	0.05528	0.20302	0.00691	497	20	378	42	-3 25
62	35559	59	0.05747	0.00081	0.48183	0.04511	0.06081	0.00563	510	16	381	34	26
63	68317	52	0.08186	0.00106	1.82435	0.17980	0.16164	0.01579	1242	13	966	87	24
65	321875	44	0.07716	0.00071	1 70378	0 14343	0.16015	0.01340	1125	9	958	74	16

					(7	commue	<i>a</i>)						
	2 00	201						ag	ge (Ma)			_	
Grain #	²⁰⁶ Pb	²⁰⁴ Pb	$\frac{207}{206}$ Pb	2σ	$\frac{207}{Pb}$	2σ	²⁰⁶ Pb	2σ	$\frac{207}{Pb}$	2σ	²⁰⁶ Pb	2σ (disc.
	(cps)	(cps)	²⁰⁶ Pb		²³⁵ U		²³⁸ U		²⁰⁶ Pb		²³⁸ U		
Sample 09M	IILAN01 -	- Milan me	ember				0.46440		1015				
66 67	57052	48	0.08080	0.00094	1.83361	0.17655	0.16458	0.01573	1217	11	982 382	86 32	21
68	40264	40	0.07372	0.00109	1.40940	0.12688	0.13866	0.01231	1034	15	837	69	20
69	14295	41	0.05673	0.00131	0.48116	0.04201	0.06151	0.00518	481	25	385	31	21
70	149899	51	0.07561	0.00073	1.55505	0.14087	0.14916	0.01343	1085	10	896	75	19
71	182656	62	0.08326	0.00075	2.43740	0.21944	0.21231	0.01902	1275	9	1241	100	3
72	7440	64	0.07344	0.00079	0.71752	0.18550	0.17300	0.01802	628	44	530	98 40	-1
74	45352	80	0.05702	0.00064	0.64549	0.06847	0.08211	0.00866	492	12	509	51	-3
75	68189	82	0.07527	0.00080	1.93438	0.17232	0.18639	0.01649	1076	11	1102	89	-3
76 77	26667	77	0.07613	0.00111	1.99289	0.14399	0.18986	0.01343	1098	15	1121	72	-2
77	49302	96	0.05570	0.00058	0.60766	0.05375	0.07912	0.00695	441	12	491 474	41 40	-12
79	5087	99	0.06065	0.00301	0.69477	0.05285	0.08308	0.006073	627	54	514	36	19
80	88792	111	0.07372	0.00068	1.73764	0.16947	0.17096	0.01660	1034	9	1017	91	2
81	35043	120	0.05821	0.00110	0.53089	0.03814	0.06614	0.00459	538	21	413	28	24
82	47570	118	0.07324	0.00086	1.35318	0.10464	0.13400	0.01024	1021	12	811	58	22
83 84	168886	125	0.09296	0.00084	2.08130	0.22608	0.20921	0.01754	427	11	352	93 27	19
Sample 09M	IILAN01b	grain set	0.055550	0.00052	0.42700	0.03424	0.05004	0.00445	727		552	27	10
1	71754	73	0.05560	0.00068	0.51704	0.02334	0.06744	0.00293	436	27	421	18	4
2	126039	109	0.05536	0.00058	0.47090	0.01914	0.06170	0.00242	427	24	386	15	10
3	73036	73	0.05609	0.00051	0.52470	0.02315	0.06784	0.00293	456	20	423	18	7
4	23653	91	0.05451	0.00050	0.47020	0.02057	0.06236	0.00268	392 423	20 57	391	10	7
6	211815	111	0.05320	0.00044	0.47159	0.01723	0.06256	0.00223	399	18	391	14	2
7	113250	103	0.05483	0.00049	0.47204	0.01795	0.06244	0.00231	405	20	390	14	4
8	174877	98	0.05447	0.00043	0.47322	0.01787	0.06301	0.00233	390	18	394	14	-1
9	86807	109	0.05473	0.00044	0.46472	0.01943	0.06158	0.00253	401	18	385	15	4
10	57076	126	0.05485	0.00050	0.48485	0.01829	0.06410	0.00233	406	20	401	14	11
12	161856	116	0.05448	0.00039	0.47089	0.01774	0.06269	0.00232	391	16	392	14	0
13	92964	107	0.05614	0.00047	0.52930	0.02275	0.06839	0.00288	458	18	426	17	7
14	30700	100	0.05585	0.00084	0.51351	0.02164	0.06668	0.00262	446	34	416	16	7
15	136124	119	0.07715	0.00069	1.86420	0.08562	0.17524	0.00789	1125	18	1041	43	8
17	82008	130	0.05457	0.00041	0.43990	0.02890	0.00133	0.00217	488	21	204 445	22	9
19	227467	90	0.05469	0.00041	0.46823	0.02153	0.06209	0.00282	400	17	388	17	3
20	35386	102	0.05428	0.00064	0.45326	0.01697	0.06056	0.00215	383	26	379	13	1
21	90252	101	0.05594	0.00050	0.54016	0.02344	0.07003	0.00298	450	20	436	18	3
22	204799	128	0.05452	0.00040	0.45269	0.01900	0.06022	0.00249	392 607	21	503	15	4
23	69684	130	0.07338	0.00059	1.63709	0.05792	0.16180	0.00557	1025	16	967	31	6
25	38166	123	0.05446	0.00045	0.45548	0.01658	0.06065	0.00215	390	18	380	13	3
26	47323	130	0.05655	0.00075	0.52895	0.02230	0.06784	0.00272	474	29	423	16	11
27	245140	119	0.07433	0.00050	1.70667	0.09897	0.16654	0.00959	1050	14	993	53	6
28 29	262781	139	0.05497	0.00047	0.47654	0.01825	0.06287	0.00235	411 1044	19	393 980	31	5 7
30	358233	110	0.07174	0.00050	1.54307	0.06077	0.15601	0.00605	978	14	935	34	5
Sample 09M	IILAN02 -	- Milan me	ember										
2	27667	65	0.07776	0.00102	2.12977	0.12602	0.19864	0.01146	1141	13	1168	61	-3
3	285428	65 64	0.07394	0.00069	1.84293	0.13042	0.18078	0.01268	2545	9	2634	122	-3 -4
5	41568	75	0.07849	0.00085	2.10336	0.13246	0.19435	0.01206	1159	11	1145	65	1
6	19651	82	0.07800	0.00143	2.16927	0.12861	0.20170	0.01137	1147	18	1184	61	-4
7	38715	62	0.05561	0.00070	0.51557	0.02886	0.06724	0.00367	437	14	420	22	4
8	29772	62	0.05565	0.00074	0.53113	0.02934	0.06922	0.00371	438	15	431	22	2
9	27705	50 67	0.07609	0.00098	1.83292	0.11263	0.17471	0.01050	403	13	1038	26	1
10	29300	30	0.07251	0.00094	1.67506	0.10970	0.16754	0.01076	1000	13	999	59	0
12	53155	34	0.08829	0.00081	2.78404	0.16674	0.22870	0.01354	1389	9	1328	71	5
13	51166	28	0.05496	0.00062	0.51729	0.03002	0.06826	0.00389	411	13	426	23	-4
14	46278	17	0.05539	0.00072	0.53247	0.02797	0.06972	0.00355	428	14	434	21	-2
10	70107	14 14	0.05967	0.00060	0.82267	0.04547	0.09999	0.00543	592	11	614 840	52 40	-4 18
18	602632	15	0.07293	0.00075	1.95871	0.12339	0.18734	0.01171	1012	8	1107	63	-2
19	15702	10	0.07172	0.00141	1.74816	0.09833	0.17677	0.00932	978	20	1049	51	-8
20	80164	14	0.05593	0.00051	0.50492	0.03017	0.06548	0.00387	450	10	409	23	9
21	29258	40	0.05532	0.00074	0.54553	0.03001	0.07152	0.00381	425	15	445	23	-5
22	8653	48	0.07144	0.00211	1.81241	0.12355	0.18400	0.01130	970	30	1089	61	-13
23 24	02479 66592	30 46	0.07425	0.00070	1./54/2	0.11611	0.1/141	0.01123	1048	10 9	1641	01 81	3
25	63962	51	0.05999	0.00064	0.80154	0.04417	0.09691	0.00524	603	11	596	31	1
26	25184	48	0.07434	0.00094	1.79198	0.10465	0.17483	0.00997	1051	13	1039	54	1

Appendix 1 (continued)

Appendix 1	
(continued)	

									ag	ge (Ma)				
(Cps) 205-pb 235-bit 235-bit 236-bit 236-bit 237-bit 2	Grain #	²⁰⁶ Pb	²⁰⁴ Pb	²⁰⁷ Pb	2σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	2σ	²⁰⁷ Pb	2σ	²⁰⁶ Pb	- 2σ	disc.
Sample OWILANO2 - Mula member 27 4016 5 09 0.0721 0.0083 1.0393 0.1118 0.0647 0.01078 0.0478 448 16 240 2 12 1 28 187 44 0.0122 0.0083 0.0070 0.2728 0.0085 0.01318 0.0187 0.0178 0.046 448 16 44 12 0.2 1 29 2.8178 44 0.0280 0.0070 0.2238 0.01671 0.0188 0.0230 0.01318 0.0247 162 16 0.204 21 22 21 1820 49 0.0741 0.0013 1.2238 0.01671 0.2230 0.01845 1355 12 1267 73 7 33 22674 54 0.08676 0.0013 2.2238 0.01673 0.2230 0.01858 0.0133 1047 19 113 71 -77 34 17417 61 0.07419 0.0018 0.0233 0.0134 0.0233 0.01885 0.0133 1047 19 113 71 -77 35 0.555 42 0.0119 0.0018 0.0234 0.0134 0.02743 0.01874 0.01858 0.0132 123 11 1176 72 4 39 1.4388 55 0.0724 0.0026 1.0735 0.10530 0.01779 0.01888 0.0135 1.35 12 1267 73 7 34 17417 61 0.07419 0.0078 0.0086 1.0313 0.01779 0.01888 0.0132 1123 11 1165 56 4.5 40 0.2308 45 0.0025 1.02131 0.0132 0.1132 0.0132 0.01320 1.0132 1123 11 1165 56 4.5 41 2.90882 67 0.01343 0.0092 4.9399 0.2443 0.3191 0.0138 0.01371 0.0132 1123 11 1165 56 4.5 41 2.90882 70 0.01548 0.00051 0.0131 0.0132 0.01320 0.01370 0.0139 0.0137 0.0138 1.2 1003 18 0.4 41 2.90882 70 0.01548 0.00051 0.0131 0.0132 0.01320 0.0137 0.0138 1.2 1003 18 0.4 41 2.90882 70 0.01548 0.00051 0.0131 0.0132 0.01320 0.0137 0.0138 1.2 1003 18 0.5 41 2.9088 0.00732 0.00071 1.2017 0.01048 0.0137 0.0138 1.2 1003 18 0.5 50 6.2055 75 0.0734 0.00071 1.2716 0.1049 0.0139 0.01671 0.0138 1.2 1003 56 5 44 3013 0.00716 0.0096 1.17370 0.0043 0.01550 0.0048 1.903 11 925 55 5 50 6.2055 75 0.0734 0.0077 1.0207 0.1146 0.0188 0.0132 1.0139 1.2 948 56 7 51 31741 44 0.0582 0.00661 0.01371 0.0139 0.01633 0.0038 1.0159 0.01088 1.015 0.0138 1.2 1003 56 7 51 31741 44 0.0582 0.00661 0.01471 0.0139 0.01633 0.01638 1.0048 1.170 9 1.00 14 5 5 50 6.2055 75 0.0734 0.0077 1.0298 0.0136 0.0163 0.01688 1.0298 1.5 9 7 54 3.973 114 0.0532 0.00077 1.2019 0.0103 0.01639 0.01688 1.029 1.2 9.7 7.1 16 7 50 6.2055 71 30 0.0545 0.0067 0.41372 0.01639 0.01638 0.01638 1.0298 1.4 9.2 7.7 116 7 50 6.2055 71 30 0.0545 0.0067 0.4141 0.1719 0.01638 0.01638 1.0198 1.2 9.1 14 3.5		(cps)	(cps)	²⁰⁶ Pb		²³⁵ U		²³⁸ U		²⁰⁶ Pb		²³⁸ U		
27 40158 36 0.00/21 0.0048 1.0740 0.11188 0.0148 0.0178	Sample 09M	IILAN02 -	Milan me	ember										
29 28378 54 000759 0.0447 0.07865 0.00456 1438 16 141 16 12 2 2 31 46322 53 0.07427 0.0065 1.77475 0.09855 0.17311 0.00933 514 16 1301 78 -13 32 1820 49 0.07876 0.0016 2.59857 0.18844 0.01472 10.1018 113 1113 71 -93 34 17417 61 0.07113 0.00064 1.97030 0.1206 0.01321 10173 1113 71 -93 35 203554 54 0.07173 0.00064 1.97155 0.12160 0.01323 1123 11 107<7	27	40156	50 67	0.07421	0.00083	1.69303	0.11188	0.16547	0.01078	1047 2674	11	987	59	6
30 4003 48 0.06811 0.06734 0.06735 0.04836 0.00831 534 70 522 22 22 31 6325 53 0.07740 0.0085 0.0195 1.62 1.62 1.61	29	28378	54	0.05589	0.00079	0.54593	0.03447	0.07085	0.00436	448	16	441	26	2
31 6522 53 0.07427 0.00065 1.77475 0.00850 0.01331 0.00087 10.49 9 9 10.30 78 -13 33 23674 44 0.08676 0.00119 2.5887 0.16844 0.12722 0.01385 11.55 12 12.7 71 71 34 955 0.07713 0.00044 1.9710 0.0128 1.0128 81 17.7 71 710 81 8 37 1.6955 42 0.01710 0.00024 4.6113 2.01695 0.01234 98 12.3 11 16.7 72 4 4 9.648 7 1.55 6 -6 -6 4 2.06864 7 1.55 0.1779 0.0132 11.23 11 16.7 7 1.45 9.0148 43 9.0148 43 1.41 1.44 9.0148 43 1.44 1.45 9.014 1.01 1.45 1.41 1.44 1.45	30	4003	48	0.05811	0.00374	0.67585	0.06095	0.08436	0.00533	534	70	522	32	2
332 18920 49 0.07801 0.0131 2.42388 0.01439 0.16230 0.01481 1.62 </td <td>31</td> <td>63225</td> <td>53</td> <td>0.07427</td> <td>0.00065</td> <td>1.77475</td> <td>0.09855</td> <td>0.17331</td> <td>0.00950</td> <td>1049</td> <td>9</td> <td>1030</td> <td>52</td> <td>2</td>	31	63225	53	0.07427	0.00065	1.77475	0.09855	0.17331	0.00950	1049	9	1030	52	2
33 1117 -1 0.0710 0.0135 1.9220 0.11352 0.0135 1.032 10 <	32	18920	49	0.07861	0.00131	2.42358	0.16720	0.22360	0.01497	1162	16	1301	78	-13
55 9555 47 0.03501 0.00185 0.02780 0.007784 0.007784 0.007784 0.00784 0.01785 1.152 8 1770 8.33 37 169555 42 0.11170 0.00062 4.65193 0.22195 0.01282 1827 7 1786 8.3 38 43797 44 0.0123 1.1170 0.00023 0.11757 0.01322 11.1170 0.01654 0.01322 1.1170 0.01564 0.01322 1.0176 0.01764 0.01322 1.01854 1.	33	17417	54 61	0.08676	0.00109	2.39837	0.10884	0.21722	0.01383	1333	12	1207	75	_7
36 20034 54 0.07713 0.00064 1.9210 0.18215 0.01821 127 7 1079 6.1 8 38 43375 44 0.07705 0.00086 1.9311 0.18169 0.01034 98 177 10.16 7.2 4 44 0.0484 77 0.01034 98 17 1076 7.2 4 44 9648 77 0.01244 0.00024 1.9312 0.01280 0.00404 31<1 1 4.9 4.4 42 34266 7 0.00738 0.00714 0.00174 0.01849 0.01411 10.18 12.55 5 44 84276 7 0.00738 0.12371 0.01933 0.16520 0.00056 14 923 5 5 47 58808 8 0.0733 0.00071 1.2231 0.01633 0.0625 0.00071 2.454 11 14 48 92373 0.000056	35	9555	47	0.05801	0.00185	0.62263	0.03740	0.07784	0.00396	530	35	483	24	9
37 16955 42 0.01170 0.00092 4.65193 0.02044 0.01322 112 1701 83 8 39 14398 55 0.07244 0.00123 11312 0.18163 18357 7 1786 90 4 30 14398 55 0.07244 0.00123 117170 0.01354 0.00132 118557 7 1786 90 4 414 30428 0.00133 0.01357 0.01357 0.01357 0.01357 0.01357 0.01357 0.01357 0.01357 0.01357 0.01357 0.0135 12 0.0135 0.0135 12 0.0135 0.0135 12 0.0185 0.0135 12 0.0185 0.0135 12 0.0185 0.0165 13 0.0171 0.01091 1.0135 0.01035 12 0.0165 13 0.0171 0.0108 0.0102 10 0.0155 0.0160 0.0102 0.0183 0.0133 0.0133 0.0133 0.0133	36	203354	54	0.07713	0.00064	1.93710	0.12100	0.18215	0.01128	1125	8	1079	61	4
38 44,7/9 44 007/05 007/05 01719 00134 29 17 10.56 -2 4 20082 7 0.11344 000052 4.5719 0.01344 98 17 10.55 0.17799 0.01034 98 17 10.55 0.17799 0.01034 98 17 10.55 0.17799 0.01034 98 17 10.55 0.17799 0.01034 10.55 0.17599 0.0074 1.71799 0.0150 2.578 7 2.558 5 7 1.7179 9.0073 0.1550 0.0766 1.44 92.5 5 47 58800 83 0.0721 0.00764 1.17170 0.10135 0.16022 0.00907 10.28 12 92.5 5 7 0.1724 0.0071 1.2821 0.0156 1.1714 0.16633 0.00825 10.0064 1.18273 0.00733 0.8617 0.0126 1.292 5 7 7 2454 17 11	37	169555	42	0.11170	0.00092	4.65193	0.26195	0.30204	0.01682	1827	7	1701	83	8
20 22/08/2 6.7 0.11434 0.00092 4.9939 0.29453 0.31931 0.01854 1855 7 1786 90 4 41 9488 77 0.017209 0.00135 11.3704 0.01390 0.0790 0.00404 431 10 449 81072 72 0.07781 0.00071 2.0297 0.11476 0.18575 0.01041 1170 9 1008 56 7 45 9516 88 0.00716 0.00066 1.5137 1.00664 0.16606 0.01022 1008 56 7 48 57215 80 0.18521 0.00686 1.61331 0.166321 0.06828 2700 7 2454 11 11 4 1454 1454 31 0.00733 0.00751 0.06871 0.06872 0.00827 0.0185 9 101 33 30 9 1 333 0 13 333 11 333 11 333 1 <td>38</td> <td>43779</td> <td>44 55</td> <td>0.07705</td> <td>0.00086</td> <td>1.93031</td> <td>0.14312</td> <td>0.18169</td> <td>0.01332</td> <td>008</td> <td>17</td> <td>1076</td> <td>56</td> <td>4</td>	38	43779	44 55	0.07705	0.00086	1.93031	0.14312	0.18169	0.01332	008	17	1076	56	4
41 96488 77 0.05546 0.00052 0.05512 0.07299 0.00107 13784 2578 7 2528 7 2578 <td>40</td> <td>220862</td> <td>67</td> <td>0.11343</td> <td>0.00092</td> <td>4.99399</td> <td>0.29453</td> <td>0.31931</td> <td>0.01865</td> <td>1855</td> <td>7</td> <td>1786</td> <td>90</td> <td>4</td>	40	220862	67	0.11343	0.00092	4.99399	0.29453	0.31931	0.01865	1855	7	1786	90	4
42 330888 90 0.17209 0.00135 11.3742 0.83512 0.04701 1038 12 1003 58 4 44 81972 7.2 0.07881 0.00067 1.01494 0.16350 0.01051 1038 12 1003 58 4 45 50516 88 0.07166 0.00096 1.3737 0.09933 0.15529 0.00986 976 14 925 5 5 48 57235 80 0.15521 0.00056 1.16130 0.16360 0.16022 0.1009 10.0285 2.700 7 2454 11 1 14 1.171 0.1444 0.01577 2.6085 7 2.454 11 1.952 5 7 7 2.454 11 1.952 5 7 7 3.3 0 5 3.3 1 4.13 4.13 4.2 2.56 7 2.6975 1.1 9.323 1 4.3 2.0 3.3	41	96488	77	0.05546	0.00052	0.55121	0.03129	0.07209	0.00404	431	10	449	24	-4
44.3 42.266 44 0.07381 0.00086 0.10379 0.10837 0.10187 1038 12 1003 S8 4 45 39516 88 0.07428 0.00074 1.22116 0.10666 0.1022 1049 10101 55 5 46 30536 0.00176 0.00074 1.23137 0.00356 0.15520 0.00086 1.7517 11 7 4.54 1.7 11 7 5.5 7 7.5 0.07433 0.00071 1.67998 0.01932 0.16803 0.00033 5.39 13 5.33 49 1 5.5 1.13044 9.3 0.05833 0.00049 0.01220 0.06817 0.00335 5.39 1.3 5.33 49 1 5.5 1.13044 9.005543 0.00494 0.01752 0.15740 0.01544 10.092 3.30 0.7 1.0434 10.3 5.38 4.3 4.2 -26 5.5 1.5 0.006543 0.00419 0.01752 </td <td>42</td> <td>330588</td> <td>90</td> <td>0.17209</td> <td>0.00135</td> <td>11.37042</td> <td>0.83512</td> <td>0.47921</td> <td>0.03500</td> <td>2578</td> <td>7</td> <td>2524</td> <td>151</td> <td>3</td>	42	330588	90	0.17209	0.00135	11.37042	0.83512	0.47921	0.03500	2578	7	2524	151	3
*** **** *** *** *** <td>43</td> <td>42266</td> <td>74</td> <td>0.07388</td> <td>0.00086</td> <td>2.02007</td> <td>0.10949</td> <td>0.16839</td> <td>0.01057</td> <td>1038</td> <td>12</td> <td>1003</td> <td>58</td> <td>4</td>	43	42266	74	0.07388	0.00086	2.02007	0.10949	0.16839	0.01057	1038	12	1003	58	4
46 30183 90 0.07126 0.00086 16733 0.01555 0.00086 97 14 972 55 5 48 57235 80 0.07321 0.00086 1.01330 0.016230 0.02685 270 7 2454 17 11 91 7474 64 0.07331 0.00077 1.72001 0.10193 0.16803 0.000871 128 18 125 11.3644 97 0.06589 0.00163 1.014954 0.15822 0.000871 0.40220 0.00678 0.00581 0.01494 1.3 533 0 5 51 1144 0.05543 0.00062 1.61684 0.01587 0.01541 0.000879 0.6611 0.00622 4009 1.5 413 42 -5 58 26797 133 0.06351 0.00170 1.4320 0.11747 0.14240 0.1587 0.15441 0.0018 1.418 43 -6 619 24454 132	45	59516	88	0.07428	0.00074	1.72116	0.10604	0.16806	0.01041	1049	10	1098	56	5
47 55800 83 0.07321 0.00086 1.1731 0.10366 0.16022 0.01009 12 958 56 7 49 74854 81 0.07331 0.00070 1.22201 0.10139 0.16803 0.000825 5700 72 11 1001 54 51 51 31741 64 0.06525 0.00136 1.1411 0.14716 0.14954 0.00157 518 213 43 42 55 112048 107 0.05525 0.00049 0.25267 0.04220 0.06817 0.00851 539 13 42 -26 56 48093 114 0.0553 0.00062 1.61644 0.15782 0.15847 0.01641 0.00879 0.01611 0.00874 439 18 8 949 8.5 87 3 59 15866 151 0.0733 0.00621 0.1623 0.01541 0.02444 0.224 11 34 34 34	46	30183	90	0.07166	0.00096	1.53737	0.09953	0.15559	0.00986	976	14	932	55	5
48 57235 80 0.18521 0.00159 11.28273 0.064320 0.02685 27.00 7 2454 117 11 50 62055 75 0.0733 0.00077 1.06998 0.01932 0.16803 0.00982 1030 94 11 952 50 51 317.41 64 0.005543 0.000668 0.09204 0.006733 0.008678 0.000879 430 10 429 33 0 55 112.044 107 0.005543 0.00062 1.61644 0.00673 0.008678 0.000829 430 10 429 33 0 57 22077 133 0.005430 0.00022 1.51847 0.15877 0.15877 0.15871 0.15414 1079 18 856 67 3 957 144 7 42 44 45 66 21218 156 0.005471 0.00063 0.03919 0.046611 0.00526 400 <th< td=""><td>47</td><td>58800</td><td>83</td><td>0.07321</td><td>0.00086</td><td>1.61731</td><td>0.10366</td><td>0.16022</td><td>0.01009</td><td>1020</td><td>12</td><td>958</td><td>56</td><td>7</td></th<>	47	58800	83	0.07321	0.00086	1.61731	0.10366	0.16022	0.01009	1020	12	958	56	7
49 74854 81 0.00473 0.0007 1.7200 0.01135 0.10832 0.00907 1023 11 952 7 51 31741 64 0.00835 0.00136 1.41411 0.14716 0.14924 0.00157 180 21 898 85 -1 55 112048 107 0.05825 0.00068 0.02021 0.00697 0.06611 0.00649 330 10 429 33 0 56 46093 114 0.03042 0.00097 0.66611 0.00649 330 15 413 42 -26 57 220975 121 0.07330 0.00062 1.61684 0.1577 0.1613 0.01846 722 21 757 104 7 61 91218 156 0.06341 0.00057 0.4613 0.01846 722 21 757 104 7 61 91218 156 0.05415 0.00057 0.46139 <td< td=""><td>48</td><td>57235</td><td>80</td><td>0.18521</td><td>0.00159</td><td>11.82873</td><td>0.69321</td><td>0.46320</td><td>0.02685</td><td>2700</td><td>7</td><td>2454</td><td>117</td><td>11</td></td<>	48	57235	80	0.18521	0.00159	11.82873	0.69321	0.46320	0.02685	2700	7	2454	117	11
11 13 14 0.14716 0.14324 0.01527 286 2.1 808 85 -1.1 55 112048 107 0.05825 0.00686 0.02040 0.06753 0.0855 539 13 533 53 94 1 55 112048 107 0.05843 0.00086 0.02040 0.0611 0.00592 430 10 429 33 0 57 220775 133 0.00366 0.020062 1.61644 0.1572 0.1587 0.01543 1039 8 949 85 9 58 26797 133 0.00366 0.00126 1.0075 0.1613 0.01841 1024 9 97 104 7 0.01031 0.01040 0.4359 0.0291 0.1643 1039 8 949 85 91 44 4 6 6 10735 0.00136 1.44141 0.4471 0.04431 0.00137 1.444 4 4	49 50	62055	75	0.07433	0.00070	1.72201	0.10193	0.16803	0.00982	1023	11	952	54 50	5 7
54 113694 93 0.05853 0.00068 6.09204 0.06733 0.00835 53 13 533 49 1 55 112048 107 0.05543 0.0049 0.5267 0.04220 0.00671 0.06878 0.006543 1039 8 949 85 9 57 22075 123 0.00356 0.00122 1.3380 0.14747 0.14344 1039 8 949 85 9 58 26797 133 0.00356 0.00122 0.13076 0.1613 0.01841 1024 9 977 105 5 61 21218 156 0.05471 0.00056 0.44781 0.04418 0.06613 0.0658 390 13 414 3 -6 61 21218 156 0.05494 0.0056 0.49173 0.04503 0.0650 0.4913 3.0 414 3 -6 61 246227 171 0.14444 0.553	51	31741	64	0.06859	0.00136	1.41411	0.14716	0.14954	0.01527	886	21	898	85	-1
55 112048 107 0.05543 0.00071 0.48229 0.05078 0.00692 330 10 429 33 0 56 48093 114 0.05302 0.00071 0.48229 0.05309 0.00681 0.00692 330 15 413 42 -26 57 220975 121 0.07390 0.00072 1.1388 0.14747 0.14241 0.01544 1039 8 949 85 9 58 2.6777 133 0.00612 1.138850 0.1477 0.01844 1024 9 957 104 7 60 24454 132 0.00651 0.01841 0.04889 0.00653 300 13 414 34 -6 61 0.14848 15 0.00650 0.02643 1600 0.02643 1024 14 406 39 1 64 60179 10.1404 0.00550 0.02633 1639 8 1405 107	54	113694	93	0.05825	0.00068	0.69204	0.06753	0.08617	0.00835	539	13	533	49	1
30 43095 114 0.03302 0.00002 1.61684 0.03099 0.00011 0.001843 103 8 949 85 9 58 26797 133 0.06386 0.00162 1.61684 0.13747 0.14204 0.01543 103 9 97 104 7 60 24454 132 0.06340 0.00124 1.08876 0.16273 0.12456 0.01881 1024 9 97 105 -5 61 91218 156 0.05471 0.00490 4.4539 0.03991 0.00568 300 13 414 4 -6 64 60179 160 0.05640 0.00560 4.9278 0.04938 0.02643 4185 7 1639 14 14 45 66 246227 171 0.14044 0.00528 0.004350 0.02643 1053 8 1405 147 16 61 104143 150 0.05740 0.00	55	112048	107	0.05543	0.00049	0.52567	0.04220	0.06878	0.00549	430	10	429	33	0
58 26797 153 0.06336 0.00122 1.33880 0.14747 0.14704 0.01841 1879 18 856 87 3 59 158565 151 0.07335 0.00062 1.61952 0.19075 0.16133 0.01841 1024 9 957 104 7 61 91218 156 0.05471 0.00047 0.48359 0.03991 0.06411 0.00253 3731 2 389 9 4 64 60179 160 0.05446 0.00063 0.02653 3731 12 389 9 1 66 246271 171 0.1404 0.00094 4.5354 0.02184 10.02848 1028 112 14 44 -6 67 103188 154 0.05288 0.00916 0.04330 0.004357 0.04455 0.02633 112 1405 34 4 71 101438 85 0.0977 2533 0.0171 <t< td=""><td>50 57</td><td>48093</td><td>114</td><td>0.05302</td><td>0.00071</td><td>0.48329</td><td>0.05099</td><td>0.06611</td><td>0.00692</td><td>330</td><td>15</td><td>413 949</td><td>42 85</td><td>-26</td></t<>	50 57	48093	114	0.05302	0.00071	0.48329	0.05099	0.06611	0.00692	330	15	413 949	42 85	-26
59 158565 151 0.07335 0.00024 1.61952 0.16013 0.01846 7122 21 77 105 -5 61 91218 156 0.05471 0.00049 0.48359 0.06411 0.00653 373 12 389 39 -4 64 60179 160 0.05446 0.00657 0.4318 0.04304 0.06631 0.00568 390 13 414 34 -6 66 246227 171 0.11404 0.00094 4.55340 0.45195 0.28958 0.02644 1865 7 1639 14 44 -6 69 9618 140 0.0552 0.00150 .49430 0.04537 0.0468 2.4123 0.11492 0.2345 0.02088 1414 54 4 7 1455 1.18 0.460 0.0077 9.222 12 11 163 8 142 15 17 115 7 115 7 115	58	26797	133	0.06836	0.00122	1.33880	0.14747	0.14204	0.01544	879	18	856	87	3
60 24454 132 0.06340 0.00149 1.08876 0.16273 0.12456 0.0126 722 21 757 105 -53 63 73558 173 0.05405 0.00049 0.48359 0.03941 0.06215 0.00653 373 12 389 39 -4 64 60179 160 0.05446 0.00053 0.4977 0.04304 0.06650 0.02854 105 11 406 31 44 4- -6 66 246227 171 0.11404 0.00092 3.34540 0.29116 0.24345 0.0283 1639 8 1405 107 16 67 0.488 0.00058 0.04357 0.04357 0.04388 0.0283 1639 8 1405 131 445 140 147 11 405 34 4 71 101143 38 0.00073 3.2336 0.1977 0.23720 0.01424 1737 1415	59	158565	151	0.07335	0.00062	1.61952	0.19075	0.16013	0.01881	1024	9	957	104	7
b1 9/1218 156 0.054/1 0.00430 0.48339 0.03991 0.06411 0.0025 400 10 401 32 0 64 60179 160 0.05446 0.00050 0.46318 0.04848 0.06631 0.00658 390 13 414 34 -6 66 246227 171 0.11404 0.00950 0.49159 0.28988 0.02864 1865 7 1639 84 1405 17 167 163 68 10448 155 0.00085 0.00026 0.49216 0.24455 0.00083 4125 11 405 34 4 70 24690 97 0.06985 0.00117 1.47255 0.16462 0.00977 922 12 959 54 -4 71 10143 8 0.09030 0.00026 2.94778 0.2977 2277 12 959 54 -4 71 104596 19 0.90414	60	24454	132	0.06340	0.00124	1.08876	0.16273	0.12456	0.01846	722	21	757	105	-5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61	91218 73558	156	0.05471	0.00049	0.48359	0.03991	0.06411	0.00526	400	10	401	32	-4
66 246227 171 0.11404 0.00094 4.5534 0.45195 0.28958 0.02643 1855 7 1639 142 14 67 103188 154 0.05499 0.00095 0.49278 0.04903 0.06633 1039 8 100 16 39 1 69 96818 140 0.05528 0.00056 0.49430 0.04357 0.06485 0.02664 423 11 405 34 4 70 24690 97 0.06985 0.00171 1.47255 0.14622 0.01387 1432 9 1368 72 5 74 111356 18 0.06978 0.00081 1.54330 0.09770 0.1464 1551 7 1415 75 10 84 173320 26 0.0102 2.47738 0.12776 0.0133 1266 12 1261 70 0 11 174650 65 0.05328 0.00078 0.217	64	60179	160	0.05446	0.00063	0.49787	0.04304	0.06631	0.00568	390	13	414	34	-6
67 103188 154 0.05499 0.00056 0.49278 0.04903 0.06500 0.00043 412 11 406 39 1 68 110448 155 0.10035 3.8450 0.02116 0.224455 0.00068 4233 11 405 34 4 70 24690 97 0.06985 0.00117 1.47255 0.14062 0.15291 0.01438 924 17 917 80 1 71 10143 38 0.09030 0.00081 1.54330 0.09570 0.16042 0.00177 922 12 959 54 -4 70 104596 19 0.19411 0.04787 0.02977 922 12 12 1261 70 0 84 173320 26 0.00926 0.0122 24778 0.24570 0.0133 1266 12 1261 70 0 1 174650 65 0.05382 0.000280 0.05174 </td <td>66</td> <td>246227</td> <td>171</td> <td>0.11404</td> <td>0.00094</td> <td>4.55340</td> <td>0.45195</td> <td>0.28958</td> <td>0.02864</td> <td>1865</td> <td>7</td> <td>1639</td> <td>142</td> <td>14</td>	66	246227	171	0.11404	0.00094	4.55340	0.45195	0.28958	0.02864	1865	7	1639	142	14
68 110448 155 0.10083 0.00092 3.38430 0.29116 0.24459 0.02085 16.59 8 1405 107 16 69 96818 140 0.05528 0.00056 0.49430 0.06485 0.001387 1432 9 1368 72 5 71 101143 38 0.06978 0.00181 1.54330 0.09570 0.16042 0.00977 922 12 959 54 -4 79 104596 19 0.19411 0.00183 1.281392 0.80612 0.47878 0.02978 2777 8 2522 129 11 84 173320 26 0.10926 0.0012 4.4719 0.24737 0.01333 1266 12 1261 70 0 1 174650 65 0.05382 0.00078 0.45446 0.01510 0.00171 364 24 383 10 -5 3 82728 58 0.05597	67	103188	154	0.05499	0.00056	0.49278	0.04903	0.06500	0.00643	412	11	406	39	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68 69	06818	155	0.10083	0.00092	3.38450	0.29116	0.24345	0.02083	1639	8	1405	107	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	24690	97	0.06985	0.00030	1.47255	0.14062	0.15291	0.00308	924	17	917	80	1
74 111356 18 0.06978 0.00081 1.54330 0.09570 0.16042 0.00977 922 12 959 54 -4 79 104596 19 0.19411 0.00183 12.81392 0.80612 0.47878 0.02978 2777 8 2522 129 11 84 173320 26 0.10926 0.00102 2.47719 0.27776 0.29270 0.01823 1787 9 1677 90 7 86 109564 20 0.00828 0.45446 0.01360 0.06124 0.00171 364 24 383 10 -5 3 82728 58 0.05592 0.00078 0.55309 0.02980 0.07174 0.00373 449 31 447 22 1 5 185374 53 0.07251 0.00077 1.58698 0.05401 0.15873 0.00513 1000 22 950 28 5 6 67231 62 0.05474 0.00063 0.51317 0.01230 0.60799 0.00239 439	71	101143	38	0.09030	0.00086	2.94223	0.17492	0.23632	0.01387	1432	9	1368	72	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74	111356	18	0.06978	0.00081	1.54330	0.09570	0.16042	0.00977	922	12	959	54	-4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	79 83	104596	19 41	0.19411	0.00183	3 25336	0.80612	0.4/8/8	0.02978	1551	8	2522 1415	75	10
86 109564 20 0.08286 0.0102 2.46738 0.15533 0.21597 0.01333 1266 12 1261 70 0 1 174650 65 0.05382 0.00058 0.45446 0.01360 0.06124 0.00171 364 24 383 10 -5 3 82728 58 0.05592 0.00078 0.55309 0.02980 0.07174 0.00348 898 30 910 31 -1 5 185374 53 0.07251 0.00077 1.58698 0.05401 0.15873 0.00131 1000 22 950 28 5 6 67231 62 0.0567 0.0102 0.52728 0.02076 0.06879 0.00239 439 41 428 14 3 7 83622 62 0.05434 0.00061 0.52861 0.01926 0.06917 0.00238 419 26 451 14 6 10 11384	84	173320	26	0.10926	0.00102	4.47719	0.27776	0.29720	0.01404	1787	9	1677	90	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	86	109564	20	0.08286	0.00102	2.46738	0.15533	0.21597	0.01333	1266	12	1261	70	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	174650	65	0.05382	0.00058	0.45446	0.01360	0.06124	0.00171	364	24	383	10	-5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	82728	58 50	0.05592	0.00078	0.55309	0.02980	0.07174	0.003/3	449 808	31	447	22	_1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	185374	53	0.07251	0.00077	1.58698	0.05401	0.15159	0.00543	1000	22	950	28	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	67231	62	0.05567	0.00102	0.52728	0.02076	0.06870	0.00239	439	41	428	14	3
8 100/10 48 0.05604 0.00061 0.52666 0.0188 0.007307 0.00211 454 24 455 14 0 9 136843 40 0.05543 0.00061 0.52661 0.01926 0.06917 0.00241 429 24 431 14 0 10 113854 60 0.05516 0.00064 0.55167 0.01922 0.07254 0.00238 419 26 451 14 -8 11 219035 38 0.05451 0.00056 0.48054 0.01475 0.06394 0.00185 322 23 400 11 -2 12 50823 164 0.06021 0.00173 0.61314 0.03075 0.07390 0.00185 322 23 400 11 -2 13 159336 45 0.05901 0.00644 0.72690 0.02480 0.00235 525 29 498 14 5 15 48770	7	83622	62	0.05474	0.00063	0.51317	0.01823	0.06799	0.00229	402	26	424	14	-6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	170770	48	0.05604	0.00061	0.56466	0.01886	0.07307	0.00231	454	24	455	14 14	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	113854	60	0.05516	0.00064	0.52301	0.01920	0.07254	0.00238	419	26	451	14	-8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	219035	38	0.05451	0.00056	0.48054	0.01475	0.06394	0.00185	392	23	400	11	-2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	50823	164	0.06021	0.00173	0.61341	0.03075	0.07390	0.00304	611	62	460	18	26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	159336	45	0.05901	0.00064	0.72690	0.02480	0.08934	0.00289	507	24	552 498	17	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	48770	23	0.05446	0.00067	0.50974	0.01656	0.06789	0.00204	390	28	423	12	-9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	110646	51	0.05562	0.00064	0.54231	0.01722	0.07071	0.00209	437	26	440	13	-1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	28091	45	0.05420	0.00085	0.53464	0.01693	0.07155	0.00197	379	35	445	12	-18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	135897	44	0.05400	0.00061	0.46154	0.01376	0.06199	0.00171	371	26	388	10	-5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	410000	71 56	0.07252	0.00073	0.54315	0.03404	0.15825	0.00517	468	20 31	947 435	29 13	7
23 195379 102 0.05546 0.00068 0.48225 0.01491 0.06306 0.00179 431 27 394 11 9 24 155106 56 0.07418 0.00076 1.70847 0.05378 0.16703 0.00497 1046 21 996 27 5 25 37730 65 0.07359 0.00096 1.67888 0.05596 0.16546 0.00507 1030 26 987 28 5 26 105935 69 0.05445 0.00059 0.47773 0.01629 0.06363 0.00263 390 24 398 12 -2 28 56068 68 0.05438 0.00068 0.48350 0.01840 0.06449 0.00232 387 28 403 14 -4 29 101814 79 0.07333 0.00083 1.69167 0.05660 0.16617 0.00524 1037 23 991 29 5 30	22	35528	76	0.06183	0.00194	0.77637	0.03468	0.09107	0.00290	668	67	562	17	17
24 155106 56 0.07418 0.00076 1.70847 0.05378 0.16703 0.00497 1046 21 996 27 5 25 37730 65 0.07359 0.00096 1.67088 0.05578 0.16703 0.00497 1046 21 996 27 5 26 105935 69 0.05445 0.00059 0.47773 0.01629 0.06363 0.00206 390 24 398 12 -2 28 56068 68 0.05438 0.00068 0.48350 0.01840 0.06449 0.00232 387 28 403 14 -4 29 101814 79 0.07383 0.00083 1.69167 0.05660 0.16617 0.00524 1037 23 991 29 5 30 246354 84 0.11108 0.00154 0.906567 0.01019 0.06564 0.01029 1817 18 1707 60 7 11	23	195379	102	0.05546	0.00068	0.48225	0.01491	0.06306	0.00179	431	27	394	11	9
23 37/30 05 0.00/359 0.00090 1.07888 0.00596 0.10546 0.00007 1030 26 987 28 5 26 105935 69 0.05445 0.00059 0.47773 0.01629 0.06363 0.00206 390 24 398 12 -2 28 56068 68 0.05438 0.00068 0.48350 0.01840 0.06449 0.00232 387 28 403 14 -4 29 101814 79 0.07383 0.00083 1.69167 0.05660 0.16617 0.00524 1037 23 991 29 5 30 246354 84 0.11108 0.00113 4.64211 0.19107 0.03039 0.01209 1817 18 1707 60 7 31 83043 77 0.05500 0.00056 50616 0.0110 0.06675 0.00108 0.01209 1817 18 1707 60 7	24	155106	56	0.07418	0.00076	1.70847	0.05378	0.16703	0.00497	1046	21	996	27	5
28 56068 68 0.05438 0.00068 0.48350 0.01627 0.00050 0.00050 247 376 12 22 29 101814 79 0.07383 0.00068 0.48350 0.01840 0.06449 0.0023 387 28 403 14 -4 29 101814 79 0.07383 0.00083 1.69167 0.05660 0.16617 0.00524 1037 23 991 29 5 30 246354 84 0.11108 0.00113 4.64211 0.19107 0.03039 0.01209 1817 18 1707 60 7 31 83043 77 0.05500 0.00055 0.5616 0.01149 0.0655 0.01029 1817 18 1707 60 7	∠⊃ 26	37730 105935	69 69	0.07359	0.00096	1.0/888	0.05596	0.16546	0.00507	390	26 24	987 398	28 12	2 -2
29 101814 79 0.07383 0.00083 1.69167 0.05660 0.16617 0.00524 1037 23 991 29 5 30 246354 84 0.11108 0.00113 4.64211 0.19107 0.30309 0.01209 1817 18 1707 60 7 31 83043 77 0.05500 0.00055 0.56166 0.01619 0.06675 0.00198 412 27 412 12 12 12	28	56068	68	0.05438	0.00068	0.48350	0.01840	0.06449	0.00232	387	28	403	14	-4
30 246354 84 0.11108 0.00113 4.64211 0.19107 0.30309 0.01209 1817 18 1707 60 7 31 83043 77 0.05500 0.00065 0.5616 0.01610 0.06675 0.00108 412 27 417 12 1	29	101814	79	0.07383	0.00083	1.69167	0.05660	0.16617	0.00524	1037	23	991	29	5
	30 31	246354	84 77	0.11108	0.00113	4.64211	0.19107	0.30309	0.01209	1817	18 27	1707	60 12	7

1098

Appendix 2

Supplementary Data

http://earth.geology.yale.edu/~ajs/SupplementaryData/2014/07DeSouza.xlsx

References

- Achab, A., and Asselin, E., 1993, Upper Silurian and Lower Devonian chitinozoan microfaunas in the Chaleurs Group, Eastern Canada, *in* Molyneus, S. G., and Dorning, K. J., editors, Contributions to acritarch and chitinozoan research: Special Papers in Paleontology, v. 48, p. 7-15
- Afonso, J. C., and Zlotnik, S., 2011, The subductability of continental lithosphere: The before and after story, in Brown, D., and Ryan, P. D., editors, Arc-Continent Collision: London, Springer, Frontiers in Earth
- Sciences, p. 53–86, http://dx.doi.org/10.1007/978-3-540-88558-0_3
 Aleinikoff, J. N., Wintsch, R. P., Tollo, R. P., Unruh, D. M., Fanning, C. M., and Schmitz, M. D., 2007, Ages and origins of rocks of the Killingworth Dome, south-central Connecticut: Implications for the tectonic evolution of southern New England: American Journal of Science, v. 307, n. 1, p. 63-118, http:// dx.doi.org/10.2475/01.2007.04
- Badger, R. L., 1979, Origin of the Umbrella Hill conglomerate, north-central Vermont: American Journal of Science, v. 279, n. 6, p. 692–702, http://dx.doi.org/10.2475/ajs.279.6.692
- Bédard, J. H., and Stevenson, R., 1998, The Caldwell Group lavas of southern Quebec: MORB-like tholeiites associated with the opening of Iapetus Ocean: Canadian Journal of Earth Sciences, v. 36, n. 6, p. 999–1019, http://dx.doi.org/10.1139/e99-018
- Blais, D., ms, 1991, Petrography and geochemistry of the Bunker Hill sequence, Quebec Appalachians: Montreal, Canada, Université du Québec à Montréal, Montréal, M. Sc. Thesis, 54 p.
- Boucot, A. J., and Drapeau, G, 1968, Roches siluro-dévoniennes du lac Memphrémagog et roches équivalentes dans les Cantons de l'Est: Ministère des ressources naturelles du Québec, ES 01, 46 p.
- Bourque, P.-A., Malo, M., and Kirkwood, D., 2000, Paleogeography and tectono-sedimentary history at the margin of Laurentia during Silurian to earliest Devonian time: The Gaspé Belt Québec: Geological Society of America Bulletin, v. 112, n. 1, p. 4–20, http://dx.doi.org/10.1130/0016-7606(2000)112(4: PATHAT>2.0.CO:2
- Bradley, D., and Tucker, R., 2002, Emsian synorogenic paleogeography of the Maine Appalachians: The
- Journal of Geology, v. 110, n. 4, p. 483–492, http://dx.doi.org/10.1086/340634 Bradley, D. C., Tucker, R. D., Lux, D. R., Harris, A. G., and McGregor, D. C., 2000, Migration of the Acadian orogen and foreland basin across the Northern Appalachians of Maine and Adjacent areas: United
- States Geological Survey, Professional Paper 1624, 49 p. Brown, D., Ryan, P. D., Afonso, J. C., Boutelier, D., Burg, J. P., Byrne, T., Calvert, A., Cook, F., DeBari, S., Dewey, J. F., Gerya, T. V., Harris, R., Herrington, R., Konstantinovskaya, E., Reston, T., and Zagorevski, A., 2011, Arc-Continent Collision: The Making of an Orogen, *in* Brown, D., and Ryan, P. D., editors, Arc-Continent Collision:London, Springer, Frontiers in Earth Sciences, p. 477–493, http://dx.doi.org/ 10.1007/978-3-540-88558-0_17
- Castonguay, S., and Tremblay, A., 2003, Tectonic evolution and significance of Silurian-Early Devonian hinterland-directed deformation in the internal Humber zone of the southern Québec Appalachians:
- Canadian Journal of Earth Sciences, v. 40, p. 255–268, http://dx.doi.org/10.1139/e02-045
 Castonguay, S., Ruffet, G., Tremblay, A., and Féraud, G., 2001, Tectonometamorphic evolution of the southern Quebec Appalachians: ⁴⁰Ar/³⁹Ar evidence for Middle Ordovician crustal thickening and Silurian-Early Devonian exhumation of the internal Humber zone: Geological Society of America Bulletin, v. 113, p. 144–160, http://dx.doi.org/10.1130/0016-7606(2001)113(0144:TEOTSQ)2.0.CO;2 Castonguay, S., Tremblay, A., and Lavoie, D., 2002, Carte de compilation géologique, Québec-Chaudière:
- Geological Survey of Canada, Geological Bridges of Eastern Canada, Transect #2, Open File 4314. Castonguay, S., Ruffet, G., and Tremblay, A., 2007, Dating polyphase deformation across low-grade metamorphic belts: An example based on ⁴⁰Ar/³⁹Ar muscovite age constraints from the southern Québec Appalachians, Canada: Geological Society of America Bulletin, v. 119, n. 7–8, p. 978–992,
- Castonguay, S., Kim, J., Thompson, P. J., Gale, M. H., Joyce, N., Laird, J., and Doolan, B. L., 2012, Timing of tectonometamorphism across the Green Mountain anticlinorium, northern Vermont Appalachians:
 ⁴⁰Ar/³⁹Ar data and correlations with southern Quebec: Geological Society of American Bulletin, v. 124, n. 3, p. 352–367, http://dx.doi.org/10.1130/B30487.1 Cawood, P. A., McCausland, P. J. A., and Dunning, G. R., 2001, Opening Iapetus: Constraints from the
- Laurentian margin in Newfoundland: Geological Society of America Bulletin, v. 113, p. 443–453, http://dx.doi.org/10.1130/0016-606(2001)113(0443:OICFTL)2.0.CO;2
- Chew, D. M., Daly, J. S., Magna, T., Page, L. M., Kirkland, C. L., Whitehouse, M. J., and Lam, R., 2010, Timing of ophiolite obduction in the Grampian orogen: Geological Society of America Bulletin, v. 122, n. 11–12, p. 1787–1799, http://dx.doi.org/10.1130/B30139.1 Cloos, M., Sapiie, B., Quarles van Ufford, A., Weiland, R. J., Warren, P. Q., and McMahon, T. P., 2005,
- Collisional delamination in New Guinea: The geotectonics of subducting slab breakoff: Geological Society of America Special Paper 400, p. 1–52, http://dx.doi.org/10.1130/2005.2400
- Coish, R. A., 2010, Magmatism in the Vermont Appalachians, in Tollo, R. P., Bartholomew, M. J., Hibbard, J. P., and Karabinos, P. M., editors, From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: Geological Society of America Memoir 206, p. 91–110, http://dx.doi.org/10.1130/2010.1206(05)

- Cousineau, P., and Tremblay, A., 1993, Acadian deformations in the southwestern Quebec Appalachians, in Roy, D. C., and Skehan, J. W., editors, The Acadian Orogeny: Recent Studies in New England, Maritine Canada, and the Autochtonous Foreland: Geological Society of America Special Paper 275, p. 85–99, http://dx.doi.org/10.1130/SPE275-p85
- Cousineau, P. A., 1986, Le domaine océanique entre Saint-Camille-de-Bellechasse et Lac-Frontière: Ministère des ressources naturelles du Québec, MB 86-25, 48 p.
- 1990, Le Groupe de Caldwell et le domaine océanique entre St-Joseph-de-Beauce et Sainte-Sabine: Ministère des ressources naturelles du Québec, MM 87-02, 165 p.
- Cousineau, P. A., and St-Julien, P., 1992, The Saint-Daniel Mélange: Evolution of an accretionary complex in the Dunnage terrane of the Québec Appalachians: Tectonics, v. 11, n. 4, p. 898–909, http://dx.doi.org/ 10.1029/9ĬTC03182
 - 1994, Stratigraphie et paléogéographie d'un bassin d'avant-arc ordovicien, Estrie-Beauce, Appalaches du Québec: Canadian Journal of Earth Sciences, v. 31, n. 2, p. 435–446, http://dx.doi.org/10.1139/e94-040
- David, J., and Gariépy, C., 1990, Early Silurian orogenic andesites from the central Quebec Appalachians: Canadian Journal of Earth Sciences, v. 27, n. 5, p. 632–643, http://dx.doi.org/10.1139/e90-060 David, J., and Marquis, R., 1994, Géochronologie U-Pb dans les Appalaches du Québec: application aux
- roches de la zone de Dunnage: Revue géologique du Québec, v. 1, p. 16-20.
- Romer, H. S., 1980, Région de Baie Fitch-Lac Massawippi: Ministère des Ressources naturelles du Québec, RG 196, 63 p. De
- De Souza, S., ms, 2012, Évolution tectonostratigraphique du domaine océanique des Appalaches du sud du Québec dans son contexte péri-laurentien: Montréal, Quebec, Canada, Université du Québec à Montréal, Ph. D. thesis, 191 p.
- De Souza, S., and Tremblay, A., 2010a, The Rivière-des-Plante ultramafic Complex, southern Québec: Stratigraphy, structure and implications for the Chain Lakes massif, in Tollo, R., Bartholomew, J., Hibbard, J., and Karabinos, P., editors, From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: Geological Society of America Memoir 206, p. 123–140, http://dx.doi.org/10.1130/ 2010.1206(07)
- 2010b, The origin of the Moretown Formation, Vermont—An alternative perspective from the southern Quebec Appalachians: Geological Society of America, Abstracts with Programs, v. 42, n. 1, p. 55.
- De Souza, S., Tremblay, A., Daoust, C., and Gauthier, M., 2008, Stratigraphy and geochemistry of the Lac-Brompton ophiolite, Canada: evidence for extensive forearc magmatism and mantle exhumation in the Southern Québec Ophiolite Belt: Canadian Journal of Earth Sciences, v. 45, p. 999-1014, http:// dx.doi.org/10.1139/E08-044
- De Souza, S., Tremblay, A., Ruffet, G., and Pinet, N., 2012, Ophiolite obduction in the Quebec Appalachians, Canada—⁴⁰Ar/³⁹Ar age constraints and evidence for syn-tectonic crosion and sedimentation: Canadian Journal of Earth Sciences, v. 49, p. 91-110, http://dx.doi.org/10.1139/e11-037
- Dewey, J. F., 2005, Orogeny can be very short: Proceedings of the American Academy of Sciences of the United States of America, v. 102, n. 43, p. 15286–15293, http://dx.doi.org/10.1073/pnas.0505516102
- Doolan, B. L., Gale, M. H., Gale, P. N., and Hoar, R. S., 1982, Geology of the Québec Reentrant: possible constraints from early rifts and the Vermont-Québec Serpentinite Belt, in St-Julien, P., and Béland, J., editors, Major structural zones and faults of the Northern Appalachians: Geological Association of Canada Special Paper 24, p. 187-216.
- Dorais, M. J., Workman, J., and Aggarwal, J., 2008, The petrogenesis of the Highlandcroft and Oliverian plutonic suites, New Hampshire: Implications for the structure of the Taconic orogen: American Journal of Science, v. 308, n. 1, p. 73–99, http://dx.doi.org/10.2475/01.2008.03
- Dorais, M. J., Atkinson, M., Kim, J., West, D. P., and Kirby, A., 2012, Where is the Iapetus suture in northern New England? A Study of the Ammonoosuc Volcanics, Bronson Hill terrane, New Hampshire: Canadian Journal of Earth Sciences, v. 49, p. 189-205, http://dx.doi.org/10.1139/e10-108
- Dunning, G. R., O'Brien, S. J., Coleman-Sadd, S. P., Blackwood, R. F., Dickson, W. L., O'Neill, P. P., and Krogh, T. E., 1990, Silurian orogeny in the Newfoundland Appalachians: The Journal of Geology, v. 98, n. 6, p. 895–913, http://dx.doi.org/10.1086/629460
- Gale, P. N., ms, 1980, Geology of the Newport Center area north central Vermont: Burlington, Vermont, University of Vermont, M. Sc. thesis, 126 p. Gauthier, M., Auclair, M., Bardoux, M., Blain, M., Boisvert, D., Brassard, B., Chartrand, F., Darimont, A.,
- Dupuis, L., Durocher, M., Gariépy, C., Godue, R., Jébrak, M., and Trottier, J., 1989, Synthèse gîtologique de l'Estrie et de la Beauce: Ministère des ressources naturelles du Québec, MB 89-20, 681 p.
- Paleozoic development of the Maine-Québec Boundary Mountains region: Canadian Journal of Earth Sciences, v. 43, n. 3, p. 367–389, http://dx.doi.org/10.1139/e05-113
 Gower, C. F., and Krogh, T. E., 2002, A U-Pb geochronological review of the Proterozoic history hi
- eastern Grenville Province: Canadian Journal of Earth Sciences, v. 39, n. 5, p. 795-829, http:// dx.doi.org/10.1139/e01-090
- Gradstein, F. M., Ogg, J. G., and Smith, A. G., 2004, A Geologic Time Scale: Cambridge, United Kingdom, Cambridge University Press, 610 p.
- Hébert, R., and Labbé, J.Ý., 1997, Le Complexe plutonique et volcanique de Weedon dans les Appalaches du Québec, Canada: Ophiolite d'arc insulaire ordovicien: Ofioliti, v. 22, p. 183–193.

- Hibbard, J. P., van Staal, C. R., Rankin, D. W., and Williams, H., 2006, Lithotectonic map of the Appalachian orogen Cadana-United States of America: Geological Survey of Canada, map 2096A.
- Hodych, J. P., and Cox, R. A., 2007, Ediacaran U-Pb zircon dates for the Lac Matapédia and Mt. St-Anselme basalts of the Quebec Appalachians: Support for a long-lived mantle plume during the rifting phase of Iapetus opening: Canadian Journal of Earth Sciences, v. 44, n. 4, p. 565–581, http://dx.doi.org/10.1139/ e06-112
- Hollocher, K., Bull, J., and Robinson, P., 2002, Geochemistry of the metamorphosed Ordovician Taconian magmatic arc, Bronson Hill anticlinorium, western New England: Physics and Chemistry of the Earth, Parts A/B/C, v. 27, n. 1–3, p. 5–45, http://dx.doi.org/10.1016/S1474-7065(01)00002-X
- Parts A/B/C, v. 27, n. 1–3, p. 5–45, http://dx.doi.org/10.1016/S1474-7065(01)00002-X Hueber, F. M., Bothner, W. A., Hatch, Jr., N. L., Finney, S. C., and Aleinikoff, J. N., 1990, Devonian plants from southern Quebec and northern New Hampshire and the age of the Connecticut Valley trough: American Journal of Science, v. 290, n. 4, p. 360–395, http://dx.doi.org/10.2475/ajs.290.4.360
- Huot, F., ms, 1997, Étude pétrologique des processus magmatiques reliés au massif ophiolitique du mont Chagnon, Québec, Canada: Québec, Canada, Université Laval, M. Sc. thesis, 211 p.
- Johnson, M. C., and Plank, J. N., 2000, Dehydration and melting experiments constrain the fate of subducted sediments: Geochemistry, Geophysics, Geosystems, v. 1, n. 12, http://dx.doi.org/10.1029/1999/ GC000014
- Karabinos, P., Samson, S. D., Hepburn, J. C., and Stoll, H. M., 1998, Taconian orogeny in the New England Appalachians: Collision between Laurentia and the Shelburne Falls arc: Geology, v. 26, n. 3, p. 215–218, http://dx.doi.org/10.1130/0091-7613(1998)026(0215:TOITNE)2.3.CO;2
- Kim, J., 2006, Tectonic perspectives on the Moretown Formation, Vermont and Massachussetts: Geological Society of America, Abstracts with Programs, v. 38, n. 2, p. 72.
- Kim, J., and Jacobi, R. D., 1996, Geochemistry and tectonic implications of Hawley Formation meta-igneous units: Northwestern Massachusetts: American Journal of Science, v. 296, n. 10, p. 1126–1174, http:// dx.doi.org/10.2475/ajs.296.10.1126
 - 2002, Boninites: characteristics and tectonic constraints, northeastern Appalachians: Physics and Chemistry of the Earth, Parts A/B/C, v. 27, n. 1–3, p. 109–147, http://dx.doi.org/10.1016/S1474-7065(01)00005-5
- Kim, J., Gale, M., Laird, J., and Stanley, R., 1999, Lamoille River Valley bedrock transect #2, in Wright, S. F., editor, Guidebook to field trips in Vermont and adjacent regions of New Hampshire and New York: Burlington, Vermont, 91st New England Intercollegiate Geological Conference, p. 213–250.
- Kim, J., Coish, R., Evans, M., and Dick, G., 2003, Supra-subduction zone extensional magmatism in Vermont and adjacent Quebec: Implications for early Paleozoic Appalachian tectonics: Geological Society of America Bulletin, v. 115, p. 1552–1569, n. 12, http://dx.doi.org/10.1130/B25343.1
 Kumarapeli, S. P., Dunning, G. R., Pintson, H., and Shaver, J., 1989, Geochemistry and U-Pb zircon age of
- Kumarapeli, S. P., Dunning, G. R., Pintson, H., and Shaver, J., 1989, Geochemistry and U-Pb zircon age of comenditic metafelsites of the Tibbit Hill Formation, Quebec Appalachians: Canadian Journal of Earth Sciences, v. 26, n. 7, p. 1374–1383, http://dx.doi.org/10.1139/e89-117
 Kusky, T. M., Chow, J. S., and Bowring, S. A., 1997, Age and origin of the Boil Mountain ophiolite and Chain
- Kusky, T. M., Chow, J. S., and Bowring, S. A., 1997, Age and origin of the Boil Mountain ophiolite and Chain Lakes massif, Maine: Implications for the Penobscottian orogeny: Canadian Journal of Earth Sciences, v. 34, n. 5, p. 646–654, http://dx.doi.org/10.1139/e17-051
- Lafrance, B., ms, 1995, Nouvelles données stratigraphiques et structurales dans la partie sud-est du synclinorium de Connecticut Valley-Gaspé, Appalaches du sud du Québec: Québec, Canada, Université du Québec, M. Sc. thesis, INRS-ETE, 58 p.
- du Québec, M. Sc. thesis, INRS-ETE, 58 p. Laird, J., Lanphere, M. A., and Albee, A. L., 1984, Distribution of Ordovician and Devonian metamorphism in mafic and pelitic schists from northern Vermont: American Journal of Science, v. 284, n. 4–5, p. 376–413, http://dx.doi.org/10.2475/ajs.284.4-5.376
- Lamothe, D., 1979, Région de Bolton-Centre: rapport préliminaire: Ministère des ressources Naturelles du Québec, DPV-687, 14 p.
 —— 1981a, Région du Mont Sugar Loaf: rapport intérimaire: Ministère des ressources naturelles du
- 1981a, Région du Mont Sugar Loaf: rapport intérimaire: Ministère des ressources naturelles du Québec, DPV-839, 12 p.
- D., 1981b, Région de Mansonville: rapport intérimaire: Ministère des ressources naturelles du Québec, DPV-833, 19 p.
 Lavoie, D., 2004, The Lower Devonian Compton Formation in southern Quebec: from delta front to
- Lavoie, D., 2004, The Lower Devonian Compton Formation in southern Quebec: from delta front to pro-delta sedimentation: Canadian Journal of Earth Sciences, v. 41, n. 5, p. 571–585, http://dx.doi.org/ 10.1139/e04-026
- Lavoie, D., and Asselin, E., 2004, A new stratigraphic framework for the Gaspé Belt in southern Quebec: Implications for the pre-Acadian Appalachians of eastern Canada: Canadian Journal of Earth Sciences, v. 41, n. 5, p. 507–525, http://dx.doi.org/10.1139/e03-099
- Ludwig, K. R., 2003, Isoplot/Ex version 3.00, A geochronological toolkit for Microsoft Excel: Berkley, California, Berkley Geochronology Center, Special Publication 4, 73 p.
- Malo, M., 2004, Paleogeography of the Matapédia basin in the Gaspé Appalachians: initiation of the Gaspé Belt successor basin: Canadian Journal of Earth Sciences, v. 41, n. 5, p. 553–570, http://dx.doi.org/ 10.1139/e03-100
- Mange, M., Idleman, B., Yin, Q.-Z., Hidaka, H., and Dewey, J., 2010. Detrital heavy minerals, white mica and zircon geochronology in the Ordovician South Mayo Trough, western Ireland: signatures of Laurentian basement and the Grampian orogeny: Journal of the Geological Society, London, v. 167, n. 6, p. 1147–1160, http://dx.doi.org/10.1144/0016-76492009-091.
- Marquis, R., Figueiredo, M., Dion, D. J., Gauthier, M., David, J., and Hubert, J., 2001, Étude structurale des minéralisations aurifères du Groupe de Magog: Ministère des ressources naturelles du Québec, ET 99-03, 38 p.
- McWilliams, C. R., Walsh, G. J., and Wintsch, R. P., 2010, Silurian-Devonian age and tectonic setting of the

Connecticut Valley-Gaspé trough in Vermont based on U-Pb SHRIMP analyses of detrital zircons: American Journal of Science, v. 310, n. 5, p. 325–363, http://dx.doi.org/10.2475/05.2010.01 Mélançon, B., Hébert, R., Laurent, R., and Dostal, J., 1997, Petrological and geochemical characteristics of

- the Bolton Igneous Group, southern Québec Appalachians: American Journal of Science, v. 297, n. 5, p. 527–549, http://dx.doi.org/10.2475/ajs.297.5.527 Mercier, P.-E., Soucy De Jocas, B., and Tremblay, A., 2012, Stratigraphic and structural relationships between
- Ordovician arc-forearc rocks and the Gaspé Belt, Stoke Mountains area, southern Quebec Appalachians: Geological Society of America, Abstracts with Programs, v. 44, n. 2, p. 69.
- Moench, R. H., and Aleinikoff, J. N., 2002, Stratigraphy, geochronology, and accretionary terrane settings of two Bronson Hill arc sequences, northern New England: Physics and Chemistry of the Earth, v. 27, p. 47-95, http://dx.doi.org/10.1016/S1474-7065(01)00003-1
- Moench, R. H., Boone, G. M., Bothner, W. A., Boudette, E. L., Hatch, N. L., Jr., Hussey, A. M., III, Marvinney, R. G., and Aleinikoff, J. N., 1995, Geological map of the Sherbrooke-Lewiston area, Maine, New Hampshire, and Vermont, Unites-States, and Québec, Canada: United States Geological Survey, Investigations Series Map I-1898 D.
- O'Brien, S. J., O'Brien, B. H., Dunning, G. R., and Tucker, R. D., 1996, Late Neoproterozoic Avalonian and related peri-Gondwanan rocks of the Newfoundland Appalachians, in Nance, R. D., and Thompson, M. D., editors, Avalonian and related peri-Gondwanan rocks of the Circum-North Atlantic:Geological Society of America Special Paper 304, p. 9-28, http://dx.doi.org/10.1130/0-8137-2304-3.9
- Osberg, P. H., 1978, Synthesis of the geology of northeastern Appalachians, U.S.A., in Caledonian-Appalachian orogen of the North Atlantic region: Geological Survey of Canada, Paper 78-13, p. 137– 147.
- Osberg, P. H., Tull, J. F., Robinson, P., Hon, R., and Butler, J. R., 1989, The Acadian orogen, in Hatcher, R. D., Jr., Thomas, W. A., and Viele, G. W., editors, The Appalachian-Ouachita orogen in the United States: Boulder, Colorado, Geological Society of America, Geology of North America, v. F-2, p. 179–232.
- Percival, J. A., 2007, Geology and metallogeny of the Superior Province, Canada, in Goodfellow, W. D., editor, Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5, p. 903-928.
- Pinet, N., and Tremblay, A., 1995, Tectonic evolution of the Quebec-Maine Appalachians: from oceanic spreading to obduction and collision in the northern Appalachians: American Journal of Science, v. 295, n. 2, p. 173–200, http://dx.doi.org/10.2475/ajs.295.2.173
- Pinet, N., Tremblay, A., and Sosson, M., 1996, Extension versus shortening models for hinterland-directed motions in the southern Québec Appalachians: Tectonophysics, v. 267, p. 239-256, http://dx.doi.org/ 10.1016/S0040-1951(96)00096-0
- Rankin, D. W., Coish, R. A., Tucker, R. D., Peng, Z. X., Wilson, S. A., and Rouff, A. A., 2007, Silurian extension in the upper Connecticut Valley, United States and the origin of Middle Paleozoic basins in the Québec Embayment: American Journal of Science, v. 307, n. 1, p. 216-264, http://dx.doi.org/ 10.2475/01.2007.07
- Rickard, M. J., 1991, Stratigraphy and structural geology of the Cowansville-Sutton-Mansonville area in the Appalachians of southern Quebec: Geological Survey of Canada, Paper 88-27, 67 p.
- Robinson, P., Tucker, R. D., Bradley, D., Berry, H. N., IV, and Osberg, P. H., 1998, Paleozoic orogens in New England, USA: GGF, v. 120, n. 2, p. 119–148, http://dx.doi.org/10.1080/11035899801202119
 Rowley, D. B., and Kidd, W. S. F., 1981, Stratigraphic relationships and detrital composition of the medial
- Ordovician flysch of western New England: Implications for the tectonic evolution of the Taconic Orogeny: The Journal of Geology, v. 89, n. 2, p. 199–218, http://dx.doi.org/10.1086/628580 Ruffet, G., Féraud, G., and Amouric, M., 1991, Comparison of ⁴⁰Ar-³⁹Ar conventional and laser dating of
- biotites from the North Trégor Batholith: Geochimica et Cosmochimica Acta, v. 55, n. 6, p. 1675–1688, http://dx.doi.org/10.1016/0016-7037(91)90138-U
- time scales: Ĝeological Society of America Bulletin, v. 121, n. 5-6, p. 887-906, http://dx.doi.org/ 10.1130/B26357.1
- Sasseville, C., Tremblay, A., Clauer, N., and Liewig, N., 2008, K-Ar age constraints on the evolution of polydeformed fold-thrust belts: The case of the Northern Appalachians (southern Québec): Journal of Geodynamics, v. 45, n. 2–3, p. 99–119, http://dx.doi.org/10.1016/j.jog.2007.07.004
 Schroetter, J.-M., Pagé, P., Bédard, J. H., Tremblay, A., and Bécu, V., 2003, Forearc extension and sea-floor spreading in the Thetford-Mines ophiolite complex, *in* Dilek, Y., and Robinson, P. T., editors, Orbitaling in Earth Uisterre Conference Section London Section 2019, 1981
- Ophiolites in Earth History: Geological Society, London, Special Publications, v. 218, p. 231-251, http://dx.doi.org/10.1144/GSL.SP.2003.218.01.13
- Schroetter, J.-M., Bédard, J. H., and Tremblay, A., 2005, Structural evolution of the Thetford Mines Ophiolite Complex, Canada: Implications for the southern Québec ophiolitic belt: Tectonics, v. 24, n. 1, TC1001, http://dx.doi.org/10.1029/2003TC001601
- Schroetter, J.-M., Tremblay, A., Bédard, J. H., and Villeneuve, M. E., 2006, Syncollisional basin development in the Appalachian orogen—The Saint-Daniel Mélange, southern Québec, Canada: Geological Society of America Bulletin, v. 118, n. 1–2, p. 109–125, http://dx.doi.org/10.1130/B25779.1
- Shimoda, G., and Tatsumi, Y., 1999, Generation of rhyolite magmas by melting of subducting sediments in Shodo-Shima island, southwest Japan, and its bearing on the origin of high-Mg andesites: The Island Arc, v. 8, n. 3, p. 383–392, http://dx.doi.org/10.1046/j.1440-1738.1999.00242.x Shimoda, G., Tatsumi, Y., and Morishita, Y., 2003, Behavior of subducting sediments beneath an arc under a

high geothermal gradient: Constraints from the Miocene SW Japan arc: Geochemical Journal, v. 37, n. 4, p. 503–518, http://dx.doi.org/10.2343/geochemj.37.503

- Simonetti, A., and Doig, R., 1990, U-Pb and Rb-Sr geochronology of Acadian plutonism in the Dunnage zone of the southeastern Quebec Appalachians: Canadian Journal of Earth Sciences, v. 27, n. 7, p. 881–892, http://dx.doi.org/10.1139/e90-091
- Simonetti, A., Heaman, L. M., Hartlaub, R. P., Creaser, R. A., McHattie, T. G., and Böhm, C., 2005, U-Pb zircon dating by laser ablation-MC-ICP-MS using a new multiple ion counting-Faraday collector array: Journal of Analytical Atomic Spectroscopy, v. 20, p. 677–686, http://dx.doi.org/10.1039/b504465k
- Sircombe, K. N., 2004, AGEDISPLAY: an Excel workbook to evaluate and display univariant geochronological data using binned frequency histograms and probability density distributions: Computers and Geosciences, v. 30, n. 1, p. 21–31, http://dx.doi.org/10.1016/j.cageo.2003.09.006
 Slivitzky, A., and St-Julien, P., 1987, Compilation géologique de la région de l'Estrie-Beauce: Ministère des
- Slivitzky, A., and St-Julien, P., 1987, Compilation géologique de la région de l'Estrie-Beauce: Ministère des ressources naturelles du Québec, MM 85-04, 40 p.
 Stanley, R. S., and Ratcliffe, N. M., 1985, Tectonic synthesis of the Taconian orogeny in western New Computer Stanley (2019)
- Stanley, R. S., and Ratcliffe, N. M., 1985, Tectonic synthesis of the Taconian orogeny in western New England: Geological Society of America Bulletin, v. 96, n. 10, p. 1227–1250, http://dx.doi.org/10.1130/ 0016-7606(1985)96(1227:TSOTTO)2.0.CO;2
- St-Julien, P., 1987, Géologie des régions de Saint-Victor et de Thetford-Mines (moitié est): Ministère des ressources naturelles du Québec, MM 86-01, 66 p.
- St-Julien, P., and Hubert, C., 1975, Evolution of the Taconian orogen in the Quebec Appalachians: American Journal of Science, v. 275-A, p. 337–362.
- Tollo, R. P., Corriveau, L., McLelland, J., and Bartholomew, M. J., 2004, Proterozoic tectonic evolution of the Grenville orogen in North America: An introduction, *in* Tollo, R. P., McLelland, J., Corriveau, L., and Bartholomew, M. J., editors, Proterozoic tectonic evolution of the Grenville orogen in North America: Geological Society of America Memoirs, v. 197. p. 1–18. http://dx.doi.org/10.1130/0.8137-1197-5.1
- Geological Society of America Memoirs, v. 197, p. 1–18, http://dx.doi.org/10.1130/0-8137-1197-5.1 Tremblay, A., 1990, Géologie de la région d'Ayer's Cliff (partie est): Ministère des ressources naturelles du Québec, MB 90-30, 95 p.
- 1992a, Tectonic and accretionary history of Taconian oceanic rocks of the Quebec Appalachians: American Journal of Science, v. 292, n. 4, p. 229–252, http://dx.doi.org/10.2475/ajs.292.4.229
- —— 1992b, Géologie de la région de Sherbrooke: Ministère des ressources naturelles du Québec, ET 90-02, 80 p.
- Tremblay, A., and Castonguay, S., 2002, Structural evolution of the Laurentian margin revisited (southern Quebec Appalachians): Implications for the Salinian orogeny and successor basins: Geology, v. 30, n. 1, p. 79–82, http://dx.doi.org/10.1130/0091-7613(2002)030(0079:SEOTLM)2.0.CO;2
- p. 79–82, http://dx.doi.org/10.1130/0091-7613(2002)030(0079:SEOTLM)2.0.CO;2
 Tremblay, A., and Pinet, N., 1994, Distribution and characteristics of Taconian and Acadian deformation, southern Québec Appalachians: Geological Society of America Bulletin, v. 106, n. 9, p. 1172–1181, http://dx.doi.org/10.1130/0016-7606(1994)106(1172:DACOTA)2.3.CO;2
- 2005, Diachronous supracrustal extension in an intraplate setting and the origin of the Connecticut Valley-Gaspé and Merrimack troughs, northern Appalachians: Geological Magazine, v. 142, n. 1, p. 7–22, http://dx.doi.org/10.1017/S001675680400038X
 Tremblay, A., and St-Julien, P., 1990, Structural style and evolution of a segment of the Dunnage zone from
- Tremblay, A., and St-Julien, P., 1990, Structural style and evolution of a segment of the Dunnage zone from the Quebec Appalachians and its tectonic implications: Geological Society of America Bulletin, v. 102, n. 9, p. 1218–1229, http://dx.doi.org/10.1130/0016-7606(1990)102(1218:SSAEOA)2.3.CO;2
 Tremblay, A., Hébert, R., and Bergeron, M., 1989, Le Complexe d'Ascot des Appalaches du sud du Québec:
- Tremblay, A., Hébert, R., and Bergeron, M., 1989, Le Complexe d'Ascot des Appalaches du sud du Québec: pétrologie et géochimie: Canadian Journal of Earth Sciences, v. 26, n. 12, p. 2407–2420, http:// dx.doi.org/10.1139/e89-206
 Tremblay, A., Laflèche, M. R., McNutt, R. H., and Bergeron, M., 1994, Petrogenesis of Cambro-Ordovician
- Tremblay, A., Laflèche, M. R., McNutt, R. H., and Bergeron, M., 1994, Petrogenesis of Cambro-Ordovician subduction-related granitic magmas of the Québec Appalachians, Canada: Chemical Geology, v. 113, n. 3–4, p. 205–220, http://dx.doi.org/10.1016/0009-2541(94)90067-1
 Tremblay, A., Malo, M., and St-Julien, P., 1995, Dunnage Zone-Quebec, *in* Williams, H., editor, Geology of
- Tremblay, A., Malo, M., and St-Julien, P., 1995, Dunnage Zone-Quebec, *in* Williams, H., editor, Geology of the Appalachian-Caledonian Orogen in Canada and Greenland: Geological Survey of Canada, Geology of Canada, n. 6, p. 179–197.
- Tremblay, A., Ruffet, G., and Castonguay, S., 2000, Acadian metamorphism in the Dunnage zone of southern Québec, northern Appalachians: ⁴⁰Ar/³⁹Ar evidence for collision diachronism: Geological Society of America Bulletin, v. 112, n. 1, p. 136–146, http://dx.doi.org/10.1130/0016-7606(2000)112(136: AMITDZ)2.0.CO;2
- Tremblay, A., Ruffet, G., and Bédard, J. H., 2011, Obduction of Tethyan-type ophiolites—A case-study from the Thetford-Mines ophiolitic Complex, Québec Appalachians, Canada: Lithos, v. 125, n. 1–2, p. 10–26, http://dx.doi.org/10.1016/j.lithos.2011.01.003
- http://dx.doi.org/10.1016/j.lithos.2011.01.003 Tucker, R. D., and Robinson, P., 1990, Age and setting of the Bronson Hill magmatic arc: A re-evaluation based on U-Pb zircon ages in southern New England: Geological Society of America Bulletin, v. 102, n. 10, p. 1404–1419, http://dx.doi.org/10.1130/0016-7606(1990)102(1404:AASOTB)2.3.CO;2
- Van Grootel, G., Tremblay, A., Soufiane, A., Achab, A., and Marquis, R., 1995, Analyse micropaléontologique du synclinorium de Connecticut Valley–Gaspé dans le sud du Québec: étude préliminaire: Ministère des ressources naturelles du Québec, MB 95–26.
- van Staal, C. R., 2007, Pre-Carboniferous tectonic evolution and metallogeny of the Canadian Appalachians, in Goodfellow, W. D., editor, Mineral Deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5, p. 793–818.
 van Staal, C. R., and de Roo, J. A., 1995, Mid-Paleozoic tectonic evolution of the Appalachian central mobile
- van Staal, C. R., and de Roo, J. A., 1995, Mid-Paleozoic tectonic evolution of the Appalachian central mobile belt in northern New Brunswick, Canada: Collision, extensional collapse and dextral transpression, *in* Hibbard, J. P., van Staal, C. R., and Cawood, P. A., editors, Current perspectives in the Appalachian-Caledonian Orogen: Geological Association of Canada Special Paper 41, p. 367–389.

- van Staal, C. R., Dewey, J. F., Mac Niocaill, C., and McKerrow, W. S., 1998, The Cambrian-Silurian tectonic evolution of the Northern Appalachians and British Caledonides: history of a complex, west and southwest Pacific-type segment of Iapetus, in Blundell, D. J., and Scott, A. C., editors, Lyell: The past is the key to the present: Geological Society, London Special Publications, v. 143, p. 197-242, http:// dx.doi.org/10.1144/GSL.SP.1998.143.01.17
- van Staal, C. R., Currie, K. L., Rowbotham, G., Rogers, N., and Goodfellow, W., 2008, Pressure-temperature paths and exhumation of Late Ordovician-Early Silurian blueschists and associated metramorphic nappes of the Salinic Brunswick subduction complex, northern Appalachians: Geological Society of America Bulletin, v. 120, n. 11–12, p. 1455–1477, http://dx.doi.org/10.1130/B26324.1 Wardle, R. J., James, D. T., Scott, D. J., and Hall, J., 2002, The southeastern Churchill Province: synthesis of a
- Paleoproterozoic transpressional orogen: Canadian Journal of Earth Sciences, v. 39, n. 5, p. 639-663, http://dx.doi.org/10.1139/e02-004
- Whitehead, J., Dunning, G. R., and Spray, J. G., 2000, U-Pb geochronology and origin of granitoid rocks in the Thetford Mines ophiolite, Canadian Appalachians: Geological Society of America Bulletin, v. 112, n. 6, p. 915–928, http://dx.doi.org/10.1130/0016-7606(2000)112(915:UGAOOG)2.0.CO;2
- Williams, H., 1979, Appalachian orogen in Canada: Canadian Journal of Earth Sciences, v. 16, n. 3, p. 792–808, http://dx.doi.org/10.1139/e79-070
 Wintsch, R. P., Aleinikoff, J. N., Walsh, G. J., Bothner, W. A., Hussey, A. M., II, and Fanning, C. M., 2007, SHRIMP U-Pb evidence for a Late Silurian age of metasedimentary rocks in the Merrimack and Distribution of the sector of the se Putnam-Nashoba terranes, eastern New England: American Journal of Science, v. 307, n. 1, p. 119-167,
- Yin, Q.-Z., Wimpenney, J., Tollstrup, D. L., Mange, M., Dewey, J. F., Zhou, Q., Li, X.-H., Wu, F.-Y., Li, Q.-L., Liu, L., and Tang, G.-Q., 2012, Crustal evolution of the South Mayo Trough, western Ireland, based on U-Pb ages and Hf-O isotopes in detrital zircons: Journal of the Geological Society, London, v. 169, n. 6, p. 681–689, http://dx.doi.org/10.1144/jgs2011-164