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Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - |l

We can obtain an approximate solution to the fundamental natural frequency
through an approximate formula developed using energy principles by Lord
Rayleigh. As with single-degree-of-freedom systems, MDOF systems can also use
this approximation:
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where u, = the static deflection under the dead load of the structure Q,, acting in the
direction of motion, and g = the acceleration due to gravity. Thus, the first mode is
approximated in shape by the static deflection under dead load. For a building, this
can be applied to each of the X and Y directions to obtain the estimates of the
fundamental sway modes.
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Fig. 2.1a) Deflection for Rayleigh’s Formula Applied to Buildings

Likewise for a bridge, by applying the dead load in each of the vertical and horizontal
directions, the fundamental lift and drag modes can be obtained. The torsional mode
can also be approximated by applying the dead load at the appropriate radius of
gyration and determining the resulting rotation angle.
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Fig. 2.1b) Deflection for Rayleigh’s Formula Applied to Bridges
Even when performing a detailed dynamic analysis using computer software like
SAP, ANSYS or ALGOR, a check using Rayleigh’s method is advisable. Often, for
most preliminary designs, a detailed dynamic analysis is not required and a first-
order analysis using Rayleigh’s method is all that is required.

Generalized Coordinates

Generalized coordinates are a means of simplification of a multi-degree-of-freedom
system into a series of equivalent single-degree-of-freedom systems.

a, cosw;t

External Load Distribution
P(z,t) (kN/m)

y(zt) =a cosw;tg (z)

B / m(z)
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Continuous Structures can be idealized mode-by-mode in Generalized Parameters :

ﬁ EQUIVALENT SDF SYSTEM

a, cosw;t

P (t)

E—

Generalized Mass:

H
M, = [m(2)¢](2)dz
0
Generalized Stiffness:

oM/
D, =not generalized
;

K
D;
o, =not generalized

Generalized Force:
H
P'(t) = [P(z.)(2)dz
0

The response of the actual structure in mode “i” is the same as that of its equivalent
SDF system in mode “i” when defined by its Generalized Properties — Stiffness,
Mass and Force.
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Orthogonality of Modes

Orthogonality of modes is a very important relationship between any two modes of
free vibration. It means that each mode is truly independent of another.

AN

Mode 1 Mode 2
Recall that we found that the natural frequencies o; and corresponding modes can
be determined algebraically:

u, (1)
u,(J)

(k]-?[m]){u,}=0, where{u,}= the Eigenvectors or Mode Shapes

\ u,(J)

Eigenvalues
or Natural Frequencies

Writing this equation for two modes j and k, (for example the 1% and 3" mode):
ofmu, {= [k, | (2-1)
o¢[mluf= [k (2-2)

Now, transpose equation (2-1), and postmultiply by {u, }

(@f [l T o} = (<Bu ) o)
Then, because of the “Reversal Law”, ({[a][b]}" = [o]' [a]' ), then this is also equal to:

o?{u; [ [m] u }={u, [T KT {u, ) (2-3)
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Matrices [m] and [k] are symmetric and so [m] =[m] and [k]' =[k]. If we then
premultiply equation (2-2) by {uj }T :

o {uj }T [mfu, }= {uj }T [k}, } (2-4)

We notice now that the right hand sides of equations (2-3) and (2-4) are equal and
therefore subtracting equation (2-4) from (2-3) yields:

(@2 o2 Ju, ' Imlu, =0

Since o, # w, , then {u, { [mfu, }=0 for j =k (2-5)

This is the Orthogonality Condition for mode shapes {uj }and {uk} including the mass

matrix. Then examining equation (2-4) using the orthogonality condition that results
from equation (2-5), we see that:

u ["klu,}=0 for j =k

This is the second Orthogonality Condition including the stiffness matrix.

Equation (2-5) when expanded, is of the form:

m 0 0 O |y
O m, O O [lu

{ul u, un}j 0 02 0 2L =0
0 0 0 m,|lu,J,

And if one carries out the multiplication, the orthogonality condition involving mass is
obtained in the form:

> muu, =0 forj=k (2-6)
i=1

Multiplying Equation (2-6) by the natural frequency »? and realize that w’m,u; is
the inertia force associated with mode j and hence w?m;u;u, is force x

displacement or work. Then, equation (2-6) suggests that the total work done by
inertia forces of one mode on displacements of any other mode vanishes.
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In further considerations we will denote the modal displacements by ¢, and all
modes listed as columns of a square matrix [4],

_¢11 ¢12 ¢13 ) ¢ln |
¢21 ¢22 ¢23 ' ¢2n
=l . . . . ..

_¢nl ¢n2 ¢n3 } ¢nn a
mode. 1St 2I’]d 3I’d nth
The modes are Orthogonal or Independent. We can examine some standard

trigonometric functions and their integrals for an analogy to the Orthogonality
Condition.

Jcos jx cos kxdx
'[sin jxsinkxdx Integrals involving products of harmonic functions.
'[sin jx cos kxdx

The trigonometric identities of sums are:

a) CoS(X+Yy)=Cc0osSxcosy —sinxsiny
b) cos(x —y)=cosxcosy +sinxsiny

Adding a) and b) we obtain:
cosxcosy = 1(cos(x —y)+cos(x +Y)), so for x =y,
cos jxcoskx = 1(cos(j —k)x +cos(j +k)x)

and for j # k (analogous to different modes):

2
sin(j + k)x} =0
0
or, orthogonal.

27
Jcos jx cos kxdx =l{ sin(j —k)x +
0

1
2 (j-k) j+k
and for j = k (analogous to the same mode):
2z

2
_[cosz jxdx = H(1+ cos2jxdx =0 or, finite
0 0

Page 2-6



CEE490b

Generalization of Orthogonality Conditions

It was found that between two different modes, where j =k and o; # o, thatthe
Orthogonality Condition is:

{¢J }T [m]{ k}:0 or Zi:mi¢ij¢ik =0 (2-7)

Now for j =k, Zmiqﬁijz # 0, because m, >0 and ¢ij2 >0. Thus:

{6, [mlig, }= > Mi¢;" =Mj, the generalized mass of the j " mode.

The Generalized Mass, recall, is the equivalent “mass” of mode | if treated as a
single-degree-of-freedom system. More generally, for all modes:

[¢] [m][#]=|M], the diagonal matrix of Generalized Masses (2-8)
This can be verified by re-writing [¢] in terms of partitioned matrices and treating the
sub-matrices that are created by this partitioning as elements if they are

conformable, as follows:

[#] [m][¢] symbolizes the following triple matrix product:

1stmode | {g, '
2ndmode |{g, |

il e} - e

nthmode |{g, |’

nxl 1x1 1xn and is conformable, i.e.: n x n
) [m] M, 0 00 O]
{¢2}T [m] 0O M, 00 O
[{ 1}|{2}| . {¢n}]: 0 0 .0 O
. O O o . O
¢, ) [m] (0 0 00 M

nx1l 1xn
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The second Orthogonality Condition involves the stiffness matrix:

o, [klig }=0. when j=k, or 2 Kid by =0
| (2-9)

{¢j }T [k]{;/ﬁj }: K;, whenj=k,or Zki¢ij2 £0

Where K; is the Generalized Stiffness (a 1 x 1 matrix or a scalar quantity). Using
Equation (2-9), a relation can be derived involving all modes, written as columns in

[#]:
I Klll= [k ]=[w?]m7] (2-10)

and if we look at equation (2-4), then [K] is the Generalized Stiffness Matrix; o, is

the j™ natural frequency. To prove equation (2-10), [¢] and [#] can be partitioned
according to the modes and then the matrices multiplied:

I kllgl=q - tkllig) e} 1 - o))

¢} [K] Ki, 0 00 0

.} [k] 0 K; 00 0
[{ 1}|{2}| . {¢n}]: 0 O 0 0 :[K]:[w]z][M]

: O 0 0O . O

{0.] k] [0 0 0 0 K]

nx1l 1xn

With respect to equation (2-3), written for j = k:

K = {¢,— }T [k]{¢j }: ‘012{¢j }T [m]{gzﬁj}: o M]
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