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Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II 
 
We can obtain an approximate solution to the fundamental natural frequency 
through an approximate formula developed using energy principles by Lord 
Rayleigh. As with single-degree-of-freedom systems, MDOF systems can also use 
this approximation: 
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where iu = the static deflection under the dead load of the structure iQ , acting in the 
direction of motion, and g = the acceleration due to gravity. Thus, the first mode is 
approximated in shape by the static deflection under dead load. For a building, this 
can be applied to each of the X and Y directions to obtain the estimates of the 
fundamental sway modes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.1a)  Deflection for Rayleigh’s Formula Applied to Buildings 
 
 
Likewise for a bridge, by applying the dead load in each of the vertical and horizontal 
directions, the fundamental lift and drag modes can be obtained. The torsional mode 
can also be approximated by applying the dead load at the appropriate radius of 
gyration and determining the resulting rotation angle. 
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Fig. 2.1b) Deflection for Rayleigh’s Formula Applied to Bridges 
 
Even when performing a detailed dynamic analysis using computer software like 
SAP, ANSYS or ALGOR, a check using Rayleigh’s method is advisable. Often, for 
most preliminary designs, a detailed dynamic analysis is not required and a first-
order analysis using Rayleigh’s method is all that is required. 
 
Generalized Coordinates 
 
Generalized coordinates are a means of simplification of a multi-degree-of-freedom 
system into a series of equivalent single-degree-of-freedom systems.  
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Continuous Structures can be idealized mode-by-mode in Generalized Parameters : 
 
      EQUIVALENT SDF SYSTEM 
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Generalized Mass: 
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Generalized Stiffness: 
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Generalized Force: 
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The response of the actual structure in mode “i” is the same as that of its equivalent 
SDF system in mode “i” when defined by its Generalized Properties – Stiffness, 
Mass and Force. 
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Orthogonality of Modes  
 
Orthogonality of modes is a very important relationship between any two modes of 
free vibration.  It means that each mode is truly independent of another. 
 
 
 
 
 
 
 
 
 
      Mode 1      Mode 2 
 
Recall that we found that the natural frequencies jω  and corresponding modes can 
be determined algebraically: 
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Writing this equation for two modes j and k, (for example the 1st and 3rd mode): 
 
 [ ]{ } [ ]{ }jjj ukum =2ω         (2-1) 
 
 [ ]{ } [ ]{ }kkk ukum =2ω         (2-2) 
 
Now, transpose equation (2-1), and postmultiply by { }ku  
 
 [ ]{ }( ) { } [ ]{ }( ) { }k

T
kk

T
jj uukuum =2ω     

 
Then, because of the “Reversal Law”, [ ][ ]{ } [ ] [ ]( )TTT abba = , then this is also equal to: 
 
 { } [ ] { } { } [ ] { }k

TT
jk

TT
jj ukuumu =2ω       (2-3) 
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Matrices [ ]m  and [ ]k  are symmetric and so [ ] [ ]mm T =  and [ ] [ ]kk T = . If we then 
premultiply equation (2-2) by { }Tju : 
 
  
 { } [ ]{ } { } [ ]{ }k

T
jk

T
jk ukuumu =2ω       (2-4) 

 
We notice now that the right hand sides of equations (2-3) and (2-4) are equal and 
therefore subtracting equation (2-4) from (2-3) yields: 
 
 ( ){ } [ ]{ } 022 =− k

T
jkj umuωω  

 
Since kj ωω ≠  , then { } [ ]{ } 0=k

T
j umu  for kj ≠      (2-5) 

 
This is the Orthogonality Condition for mode shapes { } { }kj uu  and  including the mass 
matrix. Then examining equation (2-4) using the orthogonality condition that results 
from equation (2-5), we see that: 
  
 { } [ ]{ } 0=k

T
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This is the second Orthogonality Condition including the stiffness matrix. 
 
Equation (2-5) when expanded, is of the form: 
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And if one carries out the multiplication, the orthogonality condition involving mass is 
obtained in the form: 
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       (2-6) 

 
Multiplying Equation (2-6) by the natural frequency 2

jω  and realize that ijij um2ω  is 
the inertia force associated with mode j and hence ikijij uum2ω  is force x 
displacement or work. Then, equation (2-6) suggests that the total work done by 
inertia forces of one mode on displacements of any other mode vanishes. 
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In further considerations we will denote the modal displacements by ijφ  and all 
modes listed as columns of a square matrix [ ]φ , 
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The modes are Orthogonal  or Independent. We can examine some standard 
trigonometric functions and their integrals for an analogy to the Orthogonality 
Condition. 
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The trigonometric identities of sums are: 
 
 a) yxyxyx sinsincoscos)cos( −=+  
 b) yxyxyx sinsincoscos)cos( +=−  
 
Adding a) and b) we obtain: 
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or, orthogonal. 
 
and for j = k (analogous to the same mode): 
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Generalization of Orthogonality Conditions 
 
It was found that between two different modes, where kj ≠  and kj ωω ≠  that the 
Orthogonality Condition is: 
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Now for j = k, 0
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The Generalized Mass, recall, is the equivalent “mass” of mode j if treated as a 
single-degree-of-freedom system. More generally, for all modes: 
 
 [ ] [ ] [ ] [ ]*M =φφ mT , the diagonal matrix of Generalized Masses  (2-8) 
 
This can be verified by re-writing [ ]φ  in terms of partitioned matrices and treating the 
sub-matrices that are created by this partitioning as elements if they are 
conformable, as follows: 
 
 [ ] [ ] [ ]φφ mT  symbolizes the following triple matrix product: 
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The second Orthogonality Condition involves the stiffness matrix: 
 
 { } [ ]{ } kjk k

T
j ≠=     when,0φφ , or ∑ =
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(2-9) 
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Where *

jK  is the Generalized Stiffness (a 1 x 1 matrix or a scalar quantity). Using 
Equation (2-9), a relation can be derived involving all modes, written as columns in 
[ ]φ : 
 
 [ ] [ ] [ ] [ ] [ ][ ]*2* MKk j

T ωφφ ==        (2-10)  
 
 
and if we look at equation (2-4), then [ ] *K  is the Generalized Stiffness Matrix; jω  is 

the j th natural frequency. To prove equation (2-10), [ ]Tφ  and [ ]φ  can be partitioned 
according to the modes and then the matrices multiplied: 
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With respect to equation (2-3), written for j = k: 
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