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Chapter 3 - Forced Vibration of Multi-Degree-of-Freedom Systems 
 
We will be using modal analysis to solve problems involving Forced Vibration of 
Multi Degree of Freedom Systems, so the “direct” method which follows is not 
generally used. This is because the damping term adds a phase shift which 
generally makes this method impractical for real situations where damping is 
present. 
 
Forced Undamped Vibration 

 
Equations of motion due to external excitation are 
readily obtained from the equations of free vibration 
by adding excitation terms )(tPi  to the right hand 
side of the MDF equation: 
 
 )(tPukum i

r
ririi =+∑&&   (3.1) 

  
 where i = mass 1,2,3 …. n and irk  is the term in the 
stiffness matrix associated with the force at node r, 
generated by a unit displacement at node i. 
 
In matrix notation, the equation of motion is: 
 

[ ]{ } [ ]{ } { }Pukum =+&&    (3.2) 
 
We assume that the external forces are “harmonic”, 

or of the form tPtP ii ωsin)( =  which, in matrix notation is { } { } tPP o ωsin=  . 
 
The Particular Solution provides the Steady Response and is { } { } tutu ωsin)( =  , 
where { }u   is an amplitude vector, describing the amplitude of the individual 
displacements. This acceleration is of the following form: 
 
 { } { } tutu ωω sin)( 2−=&&        (3.3) 
 
Substituting these expressions for displacement and acceleration in the equation of 
motion yields:  
 
 [ ] { } [ ]{ } { } tPtuktum o ωωωω sinsinsin2 =+−  

or [ ] [ ]( ){ } { }oPumk =− 2ω       (3.4) 
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This is a set of nonhomogeneous algebraic equations for the unknown 
amplitudes,{ }u . The frequency, ω  is given, since it is the frequency of excitation, 
and so the resulting amplitudes of vibration can be calculated directly as a solution 
of simultaneous linear equations, using standard software. A system with n-degrees 
of freedom has n resonances. At resonances with the natural frequencies, jωω = , 
the amplitudes grow to infinite amplitudes when there is no damping present. 
 
 
Forced Damped Vibration 
 
In general, there are two types of damping that one has to examine with damped 
vibrations. 
 

 
RELATIVE DAMPING   ABSOLUTE DAMPING 

- Good for structural damping  - Good for aerodynamic damping 
- Depends only on inter-storey motion - Depends only on storey motion 
- Damping force = ic  x relative velocity - Damping force = ic  x absolute velocity 
 
 
The relative velocity is the velocity at station ( i ) - the velocity at station ( i-1) 
 
Since absolute damping depends only on the absolute motion of each mass, the 
damping matrix is diagonal. Since relative damping depends on the inter-storey 
motion, then off-diagonal terms are present in the damping matrix. Similarly, 
stiffness can also be relative, or absolute. In our previous example of the shear 
building we had relative stiffness in the inter-storey columns 
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32,cc  - Relative Damping   32,kk  - Relative Stiffness 

6541 ,,, cccc - Absolute Damping  6541 ,,, kkkk - Absolute Stiffness 
 
We can expand the 3-storey shear building of last week to include both types of 
stiffness and damping components. Recall that the stiffness constant for the 
columns of the shear building was of the form: 
 

 NEIk i
i ⋅= 3

12
l

 ; where N was the number of columns per storey (3.5) 

 
Applying Newton’s second law to the individual masses (mass x acceleration = sum 
of forces), the equations of equilibrium are: 
 
For the first mass: 
 
 122142122124111 )()( Pucucccukukkkum ++++−+++−= &&&&   (3.6a,b,c) 
 
For the second mass: 
 
 2332532123325321222 )()( Pucucccucukukkkukum ++++−++++−= &&&&&  
 
For the third mass: 
 
 3363233632333 )()( Puccucukkukum ++−++−= &&&&   
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We can use the double subscripted notation as before to further generalize the 
equations for each mass: 
 

 )(
11

tPucukum ir

n

r
irr

n

r
irii =++ ∑∑

==

&&&      for each of i=1,2,…n  (3.7) 

 
This in matrix form is: 
 
 [ ]{ } [ ]{ } [ ]{ } { }Pukucum =++ &&&        (3.8) 
 
where: 
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Note that both the damping and stiffness matrices are symmetric, since jiij kk = and 

jiij cc = . The elements of the damping matrix are analogous to those elements of the 
stiffness matrix. The element ijc is the force required at mass i (in the direction of 

iu to produce a unit velocity at mass j, while the velocities at all other masses are 
zero. The equations of motion are established by forming the stiffness, damping and 
mass matrices for the whole structure.  


