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Chapter 4 - Modal Analysis 
 
Modal analysis is a general method for analyzing the response of linear multi-
degree-of-freedom systems. It is particularly suitable for systems whose properties 
are frequency independent. The method describes the response in terms of the 
modes of free vibration whose orthogonality facilitates the solution. Therefore, the 
analysis of the free vibration (the solution of the eigenvalue problem) must be 
completed prior to the calculation of the response to external excitation. 
 
The equations of motion can be written in the general form as: 
 

[ ]{ } [ ]{ } [ ]{ } { }Pukucum =++ &&&        (4-1) 
 
 
in which [ ]m , [ ]c  and [ ]k  are mass, damping and stiffness matrices respectively;  
{u} = the displacement vector and {P} = the vector of excitation. 
 
The solution to equation (4-1) describing the response is sought in the form of a sum 
of responses in individual modes of free vibration, ijΦ , 
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Φ=   i = 1,2 … n      (4-2) 

 
in which: 

•  ijΦ  are modal coordinates of the jth mode. These modal coordinates are 
independent of time and can be chosen to an arbitrary scale. [In systems with 
distributed mass, ui(t) is replaced by u(x,t) and ijΦ  by )(xjΦ ];  

• )(tjη are new variables associated with mode j and depending on time. They 
are called generalized coordinates.  

 
To summarize: 
 
The total response at node “i”   
 

Is equal to:   
 
the sum over all modes of: 
 
 {the shape function for node “i” and mode “j” x a modal scaling factor (the 
generalized coordinate of mode “j”)}
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Equation (4-2) can be interpreted as Fig. 4.1 indicates. 
 

 
      j = 1   2  3 
 

Fig. 4.1 Response in terms of modes. 
 
Equation (4-2) represents a coordinate transformation through which one set of n 
coordinates can be replaced by another set of n independent coordinates. equation 
(4-2) can be rewritten in matrix form to include all nodes, i = 1, 2..., n: 
 
 { } [ ]{ }ηΦ=u , { } [ ]{ }η&& Φ=u , { } [ ]{ }η&&&& Φ=u      (4-3) 
 
 
where 
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       (4-4) 

  j=1 2 3 
 
Each column in equation (4-4) represents one mode of free vibrations.  
 
Substitute equation (4-3) into equation (4-1) and premultipiy by the transpose of [ ]Φ  
which is [ ]TΦ ; (this is a matrix in which modes are presented in rows) 
 

 [ ] [ ][ ]
[ ]
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Equation (4-5) considerably simplifies due to the generalized orthogonality 
conditions, discussed previously, according to which 
 

[ ] [ ][ ] [ ]*MmT =ΦΦ         (4-6a) 
 
[ ] [ ][ ] [ ] [ ] [ ]** 2 MKkT ω==ΦΦ       (4-6b) 

 
 
Hence, the two triple products result in two diagonal matrices which is very 
advantageous because [ ]{ }η&&*M and [ ]{ }η*K are column matrices. Therefore, each 
equation (4-5), written in ordinary algebraic form, contains only one variable and its 
second derivative, jη&& . 
 
If it were not for the presence of damping, the equations would be uncoupled, 
however, damping couples these equations. Clearly, it would be most desirable if the 
triple matrix product: 

 
 [ ] [ ][ ]ΦΦ cT          (4-7) 

 
containing the damping constants of the system, resulted in a diagonal matrix 
because only then may each equation (line) contain only one derivative jη& . In such a 
case, equation (4-5) represents a set of n independent equations for jη , j = 1,2...,n, 

that are "uncoupled". 
 
Since [ ]TΦ and [ ]Φ , two multipliers, are the same in equation (4-7) and equation (4-
6), the triple matrix product, equation (4-7), can result in a diagonal matrix only when 
the damping matrix, [c], is proportional to either the mass matrix  [m] or the stiffness 
matrix [k]. In the first case, [c] has to be diagonal and proportional to [m], 
 
 [ ] [ ]mc α2=           (4-8a) 
 
While the second case occurs if 
 
 [ ] [ ]kc β=          (4-8b) 
 
 
The factor 2 in equation (4-8a), is used for convenience, βα, = constants. (Recall 
that in one degree of freedom the viscous damping constant mc α2=  and 

oDωα = ). equation (4-8a) substituted into equation (4-7), yields with respect to 
equation (4-6a) 
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 [ ] [ ][ ] [ ] [ ][ ] [ ]*22 Mmc TT αα =ΦΦ=ΦΦ      (4-9a) 
 
And equation (4-8b) gives 
 
 [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ][ ] [ ][ ]*22 Mmkc jj

TTT ωβωββ =ΦΦ=ΦΦ=ΦΦ    (4-9b) 
 
Equation (4-8a) implies that only absolute dampers, may be present, every 
damping constant, ci, is proportional to the mass mi and, finally, the proportionality 
constant α  is the same for all dampers. 
 
Equations (4-6a) and (4-9a) substituted into equation (4-5) give 
 
 [ ]{ } [ ]{ } [ ][ ]

[ ]

{ } [ ] { })(**2*
*

2 tPMMM T

K

j Φ=++ ηωηαη
43421

&&&     (4-10) 

 
This is a set of n independent (uncoupled) equations. Each of them has the form 
 
 { } { })(2 2 tPMMM T

jjjjjjjj Φ=++ ηωηαη &&&      (4-11) 
 
or 
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j
jjjj M

tp
ttt

)(
)()(2)( 2 =++ ηωηαη &&& ,  j  = 1,2,3 … n    (4-12) 

 
This is identical to the single degree of freedom equation, in which 
 

 { } { } ∑
=

Φ=Φ=
n

i
iij

T
jj tPtPtp

1
)()()(        (4-13) 

 
is the generalized force linked to generalized coordinate jη  (i.e the Generalized 
Force in mode j). Equation (4-12) are independent and each of them is exactly 
equal to the equation of a single degree of freedom system and, therefore, can 
easily be solved. Thus, whenever one degree of freedom can be solved, many 
degrees of freedom can be solved too; jη are obtained from equation (4-12) and 
substituted into equation (4-2), which was an expression for the motion at mass “i”: 
 

 ∑
=

Φ=
n

j
jiji ttu

1
),()( η  i = 1,2 … n 

 
The uncoupled generalized coordinates )(tjη  are also called normal coordinates. 
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The damping constant α  occurring in equation (4-12) is calculated for each mode as 
jjD ωα =  in analogy with one degree of freedom. The modal damping ratio, Dj,. can 

be in some cases calculated, e.g. damping due to soil, fluids or air, in other cases 
must be estimated. 
 
With the damping matrix proportional to stiffness matrix (equation (4-8b)), uncoupled 
equation (4-12) is again obtained with α2  replaced by 2

jβω . 
 

 
Subscript i refers to a component of motion or to mass i; subscript j identifies the 
mode. 
 
The approach is general. With the number of masses ∞⇒ , a discrete system 
changes into a distributed one. The only change in modal analysis is that ∞=n  and 
summations in the equations for generalized mass and generalized force change to 
integration: 
 

 ∫ Φ=
l

0

2 ,)()( dxxxmM jj  the Generalized Mass in mode j, 

 ∫ Φ=
l

0

,)(),( dxxtxPp jj  the Generalized Force in mode j, 

 
Equations (4-12) and (4-2) remain unchanged. 
 
Further solution depends only on the character of the external forces. The principal 
types of excitation are discussed below. 

If the damping is not proportional to either [k] or [m], the equations of motion can be 
uncoupled using complex vibration modes. (see  Novak, M. and El Hifnawy, L., 
"Effect of soil-structure interaction on damping of structures," J. of Earthquake Eng. 
and Structural Dynamics, Vol. 11, 1983, pp. 595-621.) 
 
4.1 HARMONIC EXCITATION 
 
Assume harmonic excitation with frequency was in the case of unbalanced masses 
of machines, vortex shedding etc. Such forces can be described as: 
 
 tPtP ii ωcos)( = , or { } { } tPtP ωcos)( =      (4-14) 
 
 

The decoupling of equations of motion can be interpreted as a result of the 
external loads being in effect replaced by a system of fictitious (generalized) 
loads such that each of them excites just one mode only. 
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Where 
 
 { } [ ]Tni PPPPP ......21=  
 
The generalized forces for mode j, are from equation (4-13) 
 

 ∑
=

Φ=
n

i
iijj Pttp

1
cos)( ω        (4-15) 

or 
 

 tLtp jj ωcos)( = , ∑
=

Φ=
n

i
iijj PL

1
,      (4-16) 

 
 the Force Participation Factor in mode j 
 
The generalized equation of motion, equation (4-12), is 
 

 t
M
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M
tp

ttt
j

j

j

j
jjjj ωηωηαη cos

)(
)()(2)( 2 ==++ &&&     (4-17) 

 
This is an equation formally identical with that of single degree of freedom systems 
whose mass is jM and which is subjected to harmonic excitation with amplitude jL . 
This is called the Force Participation Factor because its magnitude is a measure of 
the degree to which the excitation forces participate in the excitation of mode j. 
 
The solution of equation (4-17) follows from the SDOF solution found previously,  
 
 

444 3444 2144 344 21
TransientStateSteady 

)cos()cos()( o
jj

to
jjjj tett φωηφωηη α +++= −     (4-18) 

 
in which, the first term describes the most important steady state part of the motion 
(the particular solution). Its amplitude is  
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where jε = the dynamic magnification factor in one degree of freedom whose natural 
frequency is jω . and damping jD . and jjj KM =2ω = generalized stiffness. The phase 
shift of the steady state component  
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The transient part of equation (4-18) dies out due to damping; constants o
jη and o

jφ , if 
needed, are given by initial conditions. 
 
The real steady motion is from equation (4-2) 
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where the amplitude in mode j is 
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Thus, the response in each displacement coordinate i consists of harmonic 
components that have the same frequency ω but different amplitudes and phase 
shifts. At resonance with mode r, rj ωωω == , rj D2/1=ε ; the resonant amplitude of 
the resonating mode and its phase shift are 
 

 
rrr

irj
ir DM

L
u

2
1

2ω
Φ

= , 2/πφ −=r       (4-22) 

 
With small damping, the resonant amplitude is usually much larger than the non-
resonant amplitudes of the other modes and equation (4-22) is sufficient to estimate 
the resonant amplitudes of the system. 
 
With large damping the contribution from all modes may be more significant. At 
resonance with the first natural frequency, i.e. for 1ωω = , the phase shifts, 
evaluated from equation (4-20), take on the values 1φ =-90° and 0,.....3,2 ≅φ . 
Consequently, the first resonance amplitude ( )1ωii uu =  becomes approximately 
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2

2

2
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

n

j
ijii uuu , the total response at mass “i”, when 1ωω =  

 
Similar approximate expressions can be written for the other resonances, r, 
realizing that °−≅ 1801φ , °−≅ 90rφ  and °≅ 0iφ  for i > r (see Fig 4.2). 
 
The superposition of the responses in individual modes is shown in Fig.4.2. Because 
of the phase differences of the modal components, the resultant amplitude: 
 ........321 +++≤ iiii uuuu  

 
Fiq. 4.2 Superposition of responses in individual modes. 
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When using the modal analysis, the coordinates of the modes (eigenvectors) can be 
chosen to an arbitrary scale. This can be seen from equation (4-21a) and from the 
application of this formula to one degree of freedom. 
 
In one degree of freedom 
 
 ,/2 mkj =ω  ,PLr Φ=  2Φ= mMr , Φ=Φ ir  
 
and the resonant amplitude from equation (4-22). 
 

 
D

u
Dk

P
Dkm

mP
DM

Lu st
rrr

irr

2
1

2
1

22
1

22 ==
Φ
ΦΦ

=⋅
Φ

=
ω

 

 
as found previously. 
 
Before the modal analysis is started, the modes are sometimes normalized in such a 
way that 1=Φnj or 1* =jM  for each mode. In the latter case, the modes so 
normalized are called orthonormal modes. Their coordinates are 
 

 
*
j

ij
ij

M

Φ
=Φ  

 
and the generalized mass 
 

 ∑
=

=Φ=
n

i
ijij mM

1

2*
1 

 
This normalization is used by some writers but it does not offer any particular 
advantage. 
 
The modal coordinates generally have the dimensions of the displacements, i.e. 
translations or rotations; if only translations are involved, they can be taken as 
dimensionless in which case the generalized coordinates assume the dimension of 
length and the generalized masses are in kg (or slugs). 
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Problem 4.1: Consider the five storey shear building analyzed in the tutorial. 
 
 

 
 
The elevator drive produces a harmonic force acting on the 4th floor, 
 

tPtP ωcos)( 44 =  
kNP 5.14 =  

The frequency ω  of the drive is variable. 
 
a) Find the resonant amplitudes of the top (5th) floor at natural frequencies: 

1ωω =  , 2ωω = , 3ωω =  
and also amplitudes at the operating speed of the elevator motor  

)( 432
1 ωωω +=  

The Damping ratio for all modes is 01.0=jD  and recall that, jj Dωα =  
 
b) Evaluate also the physiological effects using Fig. 4.3. 
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Fig. 4.3 Human Susceptibility to Vibration (after Reiher & Meister) 
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Static Loading 
 
Static loading can also be conveniently solved by means of modal analysis as a 
special case of harmonic excitation. The pertinent formulae follow from the 
preceding paragraph with the frequency of excitation 0⇒ω `and thus 1cos =tω . 
With 0=ω , loads Pi(t) = Pi  and 0=φ . From equation (4-19), the generalized 
coordinate of mode j is: 
 

 2,
jj

j
sti M

L
ω

η =          (4-23) 

 
and from equation (4-21), the static displacement of mass mi due to static loads 
 

 ∑
=

Φ=
n

j
ij

jj

j
sti M

L
u

1
2, ω

        (4-24) 

 
This is an exact approach, suitable to examine the effect of static loads in statically 
indeterminate structures if the free vibration modes are known already from previous 
analysis. 
 
This approach can also be used to find the response to 
a suddenly applied static load or a rectangular pulse 
whose duration TP is sufficiently longer than the natural 
period of the structure T1. In these cases, the maximum 
(peak) response ≤2 x the static response. 
    
          Fig. 4.4 
Examples:  
 

4.2 The two storey shear building is exposed to 
static wind load in the horizontal direction 
given as P1 = 30 kN , P2 = 20 kN. Compute 
the displacements u1, u2 and the stresses in the 
columns .  

Fig. 4.5  
 
 

4.3 The five storey shear building is being designed for the Toronto area. Its width 
is W = 24 m (tributary width for one frame = 6 m ). Calculate the wind loads 
and deflections of the building, the stresses in the lowest columns and 
maximum acceleration for return period 30 years, exposures A and C, and 
damping ratio 1%. 
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4.2 RESPONSE TO GROUND MOTION 
 
Differential equations of motion depend on the nature of damping. The more 
important case is that of relative damping. 

 
 
 
Relative damping. - From Newton's second 
law, forces acting on mass, im  are 
 

 )()(
1

gii

n

r
gririi uUcuUkUm &&&& −−−−= ∑

=
 

 
where the absolute displacement 

igi uuU += and the relative displacement 

gii uUu −= . With the damping force at 
mass mi described as  
 

 
ii

giigii

um
uUmuUc

&

&&&&

α

α

2
)(2)(

−=

−−=−−

                      
 

 
 
 

Fig.  4.6  
 
The differential equations of the motion in terms of relative coordinates u become – 
 

 gi

n

r
ririiii umukumum &&&&& −=++ ∑

=1
2 α ,   i = 1,2,3, …. n  (4-25) 

 
This is formally equal to equation (4-1) in which the equivalent exciting forces 
 
 gii umtP &&−=)( ,  i = 1,2,3, …. n  
 
The damping satisfies equation (4-8a) and, therefore, modal analysis leads to 
decoupled equations for generalized coordinates iη . The generalized force (the sign 
can be omitted) is: 
 

 ∑=
i

ijij tPtp φ)()(  

or 
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 jg

n

i
ijigj Lumutp &&&& =Φ= ∑

=1
)(  

where the earthquake participation factor ∑
=

Φ=
n

i
ijij mL

1
 

 
In matrix form, equations (4-25) can be written as 
 
 [ ]{ } [ ]{ } [ ]{ } [ ]{ } gumukucum &&&&& 1−=++       (4-25a) 
 
in which [ ] [ ]mc α2=  and { } [ ]T1...1111 =  
 
Equation (4-25a) can also be derived directly realizing that the inertia forces stem 
from the absolute displacements Ui but the stiffness and damping forces are due to 
the relative displacements ui. Then, 
 
 [ ]{ } [ ]{ } [ ]{ } { }0=++ ukucUm &  
 
Eliminating U, equation (4-25) is obtained.  
 
The relative displacement of mass i is, by equation (4-2), 
 

 ∑
=

Φ=
n

j
jiji tu

1
)( η         (4-25b) 

 
in which the generalized coordinate is given by equation (4-12), 
 

 )(
)(

2 2 tu
M
L

M
tp

g
j

j

j

j
jjjj &&&&& ==++ ηωηαη      (4-26) 

 
This is analogous to one degree of freedom in which the solution depends on the 
type of ground motion. 
 
Transient ground motion produces response whose solution in 1 DOF is given by 
the Duhamel (convolution) integral: 
 

 ∫ −= −−
t

o
tD

o

dteP
m

ty o

0

)( )(sin)(1)( ττωτ
ω

τω  

 
With )()( ττ gjuLP &&= , substitution gives for the generalized coordinate: 
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 where 
 

 ∫ −= −−
t

j
tD

gj dteutV jj

0

)( )(sin)()( ττωτ τω&&      (4-27) 

  
The complete response is the sum of responses in individual modes, i.e., 
 

 ∑
=

Φ=
n

j
jij

j

j

j
i tV

M
L

tu
1

)(1)(
ω

       (4-28) 

 
Integral ),,()( jjgj DuftV ω&&=  is exactly the same as in one degree of freedom and can 
be obtained by numerical integration. V(t) has the dimension of velocity, (i.e. m/s). 
equation (4-28) can be interpreted as Fig. 4.7 indicates. 
 
 
4.3 SPECTRAL APPROACH TO TRANSIENT MOTION 
 
It is usually not necessary to find the complete time history of the response. The 
maximum response is decisive in most applications and this is obtained by 
substituting the maximum value of integral Vj(t) into equation (4-28) using the same 
notation as in one degree of freedom. 
 
 

== vSVmax spectral velocity (pseudo velocity) 

==== 2
max

j

a

j

v

j
d

SSVS
ωωω

spectral displacement 

== vja SS ω spectral acceleration. 
 
Spectral velocities can be computed for any typical earthquake. In Fig. 4.7 , the 
spectral velocity of El Centro earthquake is given. Smoothed or averaged spectra 
should be used possibly depending on site conditions (Figs. 4.8 and 4.9). In terms of 
spectral displacement, the maximum (peak) displacement in the jth mode is: 
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Fig. 4.7 Smoothed El Centro spectra reduced to a maximum 
acceleration of 20%g 
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Fig. 4.8  Average acceleration spectra for different site conditions 
 

Fig. 4.9 84 percentile acceleration spectra for different site conditions  
(after Seed, Ugos and Lysmer, 1974)
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The effective acceleration for mode j is 
 

 )()(
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The stresses can be computed with a static load equal to the maximum effective 
earthquake force acting on mj in mode j defined as: 
 

 xmq iij = (accel. Amplitude) )(
2 ˆ jaij

j

j
iijji S
M
L

mum Φ== ω  

 
The total maximum base shear which is a measure of earthquake loading is, for 
mode j: 
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The total response is a sum of responses in individual vibration modes (Fig. 4.10). 

 
  Fig. 4.10 
 
The peak in individual modes does not appear at the same time. Its accurate value 
could be obtained from the resultant time history. Approximately, the maximum 
response of mass mi is: 
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One can write similar expressions for all types of responses: 
 
 e.g.  Base Shear: ∑=

j
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  Stress at location “i” ∑=
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With harmonic motion of the ground: 
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and loads: 
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Steady state response is from equations (4-19) and (4-21), denoting ∑
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The resonant amplitude in mode j is; 
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4.4 MODAL EQUIVALENT MODEL 
 
In earthquake engineering, the "modal equivalent model" is sometimes used to 
represent the structure. This model comprises n single degree of freedom systems 
whose damping and natural frequencies are identical to those of individual vibration 
modes and the masses and their heights are so determined that identical base 
moments and base shears are obtained from both mode j and the equivalent model 
(Fig.4.11). 
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   Mode j    Equivalent 1 DOF Model 
 

Fig. 4.11 Structural response in mode j and its equivalent 1 DOF model 
 
Thus, for the base shear: 
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and from here the equivalent mass is: 
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The equality of base moments (overturning moments) requires: 
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which yields 
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After abbreviation the equivalent height is: 
 

 
j

n

i
iiji

j L

hm
H

∑
=

Φ
= 1  

 
 
All the modes can be represented as Fig.4.12 indicates. 
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Fig. 4.12 Representation of an n-degree of freedom structure by n 1 DOF systems 
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Problem 4.4 
 

a) Calculate the earthquake response, i.e. displacements, earthquake forces, 
base shear and stresses in the lowest columns of the five storey shear 
building due to the 20% El Centro. Consider all modes and damping ratio 2%. 
 

b) Calculate the response of the top floor and the base shear of the same five 
storey building considering the four average acceleration spectra for different 
site conditions (Fig.4.8), maximum ground acceleration 20% g, damping 5% 
and the first mode only. 

 
Problem 4.5 
 
Calculate the resonant amplitudes of the five storey shear building due to harmonic 
horizontal ground motion )(tug , whose amplitude is 0.01 in and frequency ranges 
from 0 to 1.2 5ω . Assume D j = 0.01. 
 
Problem 4.6 
 
Adjust the Duhamel integral for numerical integration by taking all factors containing 
t in front of the integration sign and prepare a flow chart for the computation of the 
complete time history ui (t) from equation (4-28). 
 

Answers to Problem 4.4a: (for m00.41 =l ) 
 

Amplitudes:  u51 = 4.8x10-3 m 
u52 = l.6xl0-4 m 
u53 = 2.2x10-5 m 

f1 = 5.44 
f2 = 13.90 

1ω = 34.16 

Base shear:  Q1 = 424.82 kN   
Column stress:  
(first mode) 
 

1σ  = 36.45 MPa for outside column 
1σ ′  = 42.53 MPa for inside column 

 


