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Chapter 5 - Response To Random Loads

5.1 General

A random process differs from the deterministic processes dealt with in the
preceding chapters in that it cannot be accurately predicted mathematically even if
the past time history is known. Such a process is most meaningfully described in
statistical terms. The basic statistical characteristics are reviewed first, presuming
that the random process x(t) may represent loading of the structure or its response.

A random process may be given in the form of one representative time history
(Fig. 5.1) or by a set of sample functions collected into an ensemble (Fig. 5.2).
When the statistical characteristics are extracted from the one long time history,
the procedure involved is called temporal averaging. The analysis of the
ensemble is known as ensemble averaging. Ideally, the time histories should
extend from t - —w to t — +©

5.2 Basic Statistical Characteristics

Probability density function, p(x). This function defines the probability that x will

have a value in the range from x to x+dx. The typical bell-like shape of this function
is indicated in Fig. 5.3. Because all values may occur:

[T p0x)dx =1 (5-1)

Probability distribution function, P(x). This function defines the probability of x
being smaller than or equal to a certain value « and thus:

mm=mus@=ﬁmnm (5-2)

This function is characterized by an S-like shape and is always bounded by the
limits 0 < P(x) <1 (Fig. 5.4).

Mean value or expected value. This is the mean or average value of the
function and can be defined for the function x(t) as:

% = = [Tx(t)dt (5-3)
2T

T—>x
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Fig. 5.3 Probability Density Fig. 5.4 Probability Distribution
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Fig. 5.2a Typical Signatures of wind-Induced Accelerations of a Tall Building
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The above components of acceleration can be combined
to estimate the peak resultant acceleration as follows:

< \/é)f + é§ +r2?

Summary of Fundamental Periods

Mode Analytical During Low Winds During High Winds
Estimate Avg. (sec) C.0O.V. (%) Avg C.0.V. (%)
(sec) (sec)
1 N-S 9.0 6.26 5.6 7.16 1.4
2 E-W 7.25 6.32 2.4 6.89 1.9
3 Torsion 5.5 4.75 4.0 5.69 3.1

Fig. 5.2b)  Observed Accelerations and Corresponding Power Spectra of a 43-
Storey Building as well as Fundamental Periods
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Realizing that all values have a total probability of occurring equal to 1, the
mean value can also be expressed using the probability density function as

X = [ xp(x)ax (5-4)

Thus, the value xcan be viewed as the coordinate of the centroid of the area
under the curve p(x).

Finally, the mean value can be obtained from the ensemble of samples by
cutting through the ensemble at a certain time, e.g. t;, and calculating the
average value of the samples (Fig. 5.2). This gives

% = lim = x,(t,) (5-5)

n—)oon j—
Other notations used are x = E(x)=<Xx >.

Mean-square value is the average value of x%(t), is denoted, as
x* = E(x?*) =< x* >and follows from the time history of x(t) as

— +T 5 st HPE
X = Lx (t)dt (1> moment about the origin) (5-6)

1
2T

T -

or from the ensemble as
- 13
x* =lim=>" x7(t,) (5-7)
n~>oon i1

Variance is the mean-square value of the difference from the mean. Its notations
are o> =(x—x)* and its value is:

2_ 1
T oT

T

or from the probability density function:

T 712 nd .
o I_T(x—x) dt (2™ moment about origin) (5-8)

o, = | (x= %) px)ax (5-9)

Standard deviation is the square root of variance and is, therefore, also called
the root-mean-square value of x, or briefly r.m.s. Standard deviation is usually
denoted as:
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o, =y =y(x-x)’ (5-10)

With regard to equations (5-1) and (5-9), the standard deviation can be viewed as
the radius of gyration of p(x) about X .

Standard deviation is an important magnitude and together with the mean value
X are the most important parameters which can characterize a probability
distribution function.

Gaussian or Normal probability density and distribution functions are defined as

_(x=xy?
p(x) = T e 2% (5-11)
o,
and
1 . _(x=x)’
P(x) = oS Loe 295 dx (5-12)
o,

This distribution is called “Normal” because it fits most natural phenomena. It
can be shown that a force described by a normal distribution produces response
of linear systems which also has a normal distribution.

()
o=05a
Tg=a
o=2a

.J

0 a x

-00 84%

Fig. 5.5 Normal Distributions with Fig. 5.6 Probabilities associated with

x = a and different values of o multiples of standard

deviation o = sd
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The normal distribution is defined by the eman value, x, and standard deviation
o, =o . The magnitude of o indicates the spread of the values of x about the

mean (Fig. 5.5). The dimensionless measure of this spread is the coefficient of
variation defined as the ratio o/ Xx .

The normal distribution is widely used and various probabilities following from it
are tabulated. For example, the probability of x being smaller than or equal to
the mean plus one standard deviation is 84%, i.e.

P(x <X +0) = 84%

This probability characterizes the pseudovelocity spectra plotted in Fig. 4.9. Other
probabilities are indicated in Fig. 5.6.

A given probability density of the process describes the percentage (proportion)
of time for which x takes on values in a certain range. However, it does not
provide any information on the rate of change in x(1) i.e., on the frequency
characteristics of the process. A more complete description of a random process
is contained in further statistical characteristics called correlation functions and
power spectral densities.

Autocorrelation function or more briefly correlation function is defined as the mean
value of the product of x(t) and x(t+z)where 7 is a time lag, i.e.

R.(r) = x(O)x(t+7) = % [Txtx(t+ ot (5-13a)

T—ow

From the ensemble (Fig. 5.2), the correlation function is obtained as
R (7)=Ilim 1Zx, O)x;(t+7) (5-13b)
n—o n i1

By evaluating the average products for different values of r , the correlation
function of a process is established. The correlation function is even, droops
either in a smooth or oscillatory way and has the following properties:

a

R(0)=x?, R(x)=0, R(r)=R(-7), -

R(0)=0

Since 7 is real time in seconds, the correlation function indicates the speed with
which the correlation of the process diminishes and the time within which it vanishes
(Fig. 5.7).
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Fig. 5.7 Typical Autocorrelation Functions Fig. 5.8 Two-sided and one-sided

Power Spectral Densities

The above statistical characteristics allow for a few more definitions.

If the statistical characteristics are independent of the reference time ¢, (Fig. 5.2) the
process is called stationary: if they depend on time t, the process is nonstationary.
The discussion here is limited to stationary processes.

If the process is stationary and the temporal averages are equal to the ensemble
averages, the process is ergodic.

A centric process is a stationary process with x = 0. Covariance is one of the
measures of the extent to which two random variables x (t) and y (t) are related to
each other or correlated. Covariance is defined as

oy = Xy (t) =< x(t)y(t) > (5-14)

When x(t) and y(t) are completely independent afy =0;
afy # 0 indicates correlation between the two variables, e.g. input force and
response.

In stationary processes the mean value x is a constant and it is, therefore, (in
favour of numerical accuracy to separate the mean value from the process and
analyze just the fluctuating random part of it), x'(t) = x(t)—x . If x(t) is a load, Xis
its static component which produces static deflection about which the structure
oscillates due to the effect of the fluctuating component x'(t). Thus, the statistical

analysis can be limited to the fluctuating component because R () =R, (7)+x?.

Page 5-8



CEE490b

Power Spectral Density, S (f). This function describes the energy distribution of
the process with regard to frequency and is defined as the Fourier Transform of
the autocorrelation function R(z), i.e.

S(f) = j"; R(r)e > dr (5-15)

This transformation yields an even, two-sided power spectrum indicated in Fig.
5.8. Because negative frequencies do not have a technical meaning, it is usually
preferable to define a one-sided power spectrum for positive frequencies only.
The area under both types of the spectra has to be the same and thus, the
magnitude of the one-sided spectrum is twice the magnitude of the two-sided
spectrum (Fig. 5.8). Splitting the integration interval into two, —« to 0 and O to

+ 00 and recalling that R(z) = R(-r), the Fourier transform of the autocorrelation

function reduces to a cosine Fourier transform and the one-sided power spectrum
becomes

S(f)=4 E’R(r)cos 27fdr (5-16)

The inverse Fourier transform of the spectrum yields the
correlation function,

R(z) = jo“’ S(f)cos 2z (5-17)

The Fourier transform pair defined by equations (5-16) and (5-17) is also known
as the Wiener-Khintchin relationship.

The term power spectrum stems from electrical applications in which it has the
following physical meaning. Assume that x(t) is random voltage filtered through a
narrow band filter and that the power passed by the filter is measured. Then, this
power is proportional to the bandwidth of the filter and the spectral density of x(t)
at the centre frequency of the filter. The total power describes the variance of the
signal and thus,

X% = [[s.(hdf =[S, (@)do (5-18)
Expressing dw = 2xdf , equation (5-18) gives

S(f) = 275(w) (5-19)
Equation (5-18) defines the most important property of the spectrum and also

suggests the dimension of a spectrum, because S(f)df must have a dimension of
x?. Consequently, Sx(f) is in (dimension of x?)/frequency. Thus if x is

Page 5-9



CEE490b

displacement, Sy (f) isin m%s™*=m?s; the power spectrum of acceleration
is similarly m?/s*s™*=m?/ s

Other forms of power spectra used are the normalized spectrum and the
logarithmic spectrum.

Normalized spectrum S'(f) is defined as S'(f) = S(f)/ o and thus S(f) = c*S'(f)
and

j: S'(f)df =1 (5-20)

Logarithmic spectrum is S' =fS(f)/ o, it is dimensionless and because

dlog, f = ~af
f
[ fS(zf)dIogele (5-21)
0 o

The relationship between S'(f)and S'(f)is shown in Fig. 5.9.

S' (£) st (f)

area=l

£ : - .log £
(a) (b) €

Fig. 5.9 Relationship between (a) - normalized spectrum and (b) - logarithmic
spectrum

When the process x(t) =const. x'(t), the spectrum is, with regard to equations
(5-13) and (5-15)

S, (f) = (Const)* S (f) (5-21a)

Sp(f)=m*S;, (7 (5-22)

where S; (f)is the spectrum of ground acceleration.
g
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Examples of Random Processes. - Examples of typical random processes
and their comparison with a deterministic harmonic process are shown in

Fig. 8.10. Mathematical expressions for some correlation functions and the
corresponding power spectra can be found in Ref. 10. Power spectra of a few
earthquake ground motions are plotted in Fig. 5.11.
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Fig. 5.10 Typical random processes and their description in terms of probability
density, power spectral density and autocorrelation function.
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Fig. 5.10a Power spectral density of wind velocity fluctuations S,(f) and schematic
of fluctuations in wake (Davenport, Harris)
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2

S(w) = Of exp[-0.74(w, | )]

5

where:
a =8.1x10%,
g =9.81 m/s *and

o, = g/U = frequency of spectrum peak

Woave Height Power Specirum {m?2.s)

I

0.50 1.00 1.50 200
Frequency w(s™")

Fig. 5.10b Pierson-Moskowitz spectrum of sea surface elevation as function of
wind speed U.
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Fig. 5.11 . Power Spectra of Earthquake Ground Acceleration
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5.3 Response to Random Load in one Deqgree of Freedom

Relationship between Input and Output

A periodic force P(t) with period T =1/f can be represented by a complex Fourier
series as:

X ir2aft 12 ir2sft
P(t)—gcre . C, _?J'_TIZP(t)e dt, r=1,2 ... (5-23)

The response of a SDF system to such a load can be obtained by means of
superposition of responses to individual components r in terms of the frequency
response function (admittance). The harmonic load

P(t)=P,e™

yields response
YO ="= Hio)e™

where

H(f) = L (5-24)

2
1- i +i2DL
fO fO

However, the response to a series of harmonic loads (equation 5-23)

y(t) = Z%CrH(fr )e"? i with f. = rf, (5-25)
The mean square response can be expressed in terms of Parceval's

v =Ykl (5-26)

—0

because (5-25) is again a Fourier series with amplitudes %C,H(f,). Hence

—_ 1 o0
y? =k—22|cf|2|H(f, ) (5-27)
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realizing that
2 2 2
IAAIANA
A non-periodic (random) force can only be expressed in the above manner if
period T is extended to«, thus from (5-27)

2 2

(5-28)

CI’

H(f,)

—_ 1 . 0
2—_
= pglzzo"

as |c,’| and |H(f,)|" are even functions. Substitution for ¢, from 5-23 gives
— 1. &2 e
2= —1limY = | [Pt)e ™ at| |H(f
y kmw;ﬂ_lz“ H(T,)
With period T — «
0 o T/2 ]
UT —df, > - j , j P(t)e " dt — A(if) as rf,=f —f and H(f.) - H(f)
0 0 -T/2

Also, the mean square response can be expresses by means of its power spectrum,

y? =[S, (f)df . Hence:
0

° 15, 12, .2 2
[,(haf =25 ] pg;[;lA(:f)l }IH(f)I of
As

2,2
;Imo{?|A(lf)| } =S,(f)

i.e. the spectrum of the excitation P(t), the relation between the spectrum of the input
and the spectrum of the output is:

S, ()= k—lzsp (FIHE)| = |eif) S, (F) (5-29)
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in which |H(f)|2 is the square of the modulus of the admittance function, which is
eqgual to the square of the dynamic magnification factor and is:

H(F) =&% =1 L

- : -30
L—(F/f, )|+ 4D?(F /1)’ (539

The relationship between the input and the output described by equation 5-29 is
shown in Fig. 5.12.

POWER SPECTRA TIME HISTORIES

Sp(f)

P(t)

Broad-band

(£ |2

Harmonic

sy(f)
y{t)

AﬂAﬂAAA/

NAVERSS
L

T = l/fo

Fig. 5.12 The relationship between spectrum of input and spectrum of output
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With response spectrum defined by equation 5-21, the mean square response F is

y?= T (f)df_— j S, (NIH(f)* of (5-31)

or in terms of circular frequency

"<
O'—:S

27S (a)) = j S, (0)dw

From equation 5-31 the rms displacement having the dimension of amplitudes, is

\/F = o,. The only complication is that the integral in equation 5-31 cannot be
generally evaluated in closed form. It can be evaluated approximately as:

= izjsp (F)df + %Tsp (£ )H(F) df
(5-32)
== j S,(Ndf +-=

This approximate evaluation is based on replacing |H(f)|2 by unity for frequencies

from O to f, and on replacing the force power spectrum Sp (f) by a constant (white)
spectrum Sp (f ,) whose magnitude is equal to the force spectrum for the natural
frequency of the system, f, (Fig. 5.13). The first part of equation 5-32 is called the
background effect and the second part the resonant effect.

If greater accuracy is needed, the integral in equation 5-31 can be evaluated using
the theory of residua or numerical integration.

S(f)
1)

7(t) T35

v/\v/\vu UVU\/U \/VVV
J_ |

Mams d

Fig. 5.13 Approx. evaluation of response Fig. 5.14 Peak of random response
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When the damping is small and the spectrum flat, the second part of equation
5-32 yields sufficient accuracy and thus, the variance of the response is
approximately

- 1 () 1 T o
f 2z S -=—3 —— 5-33
V2 S = 28 (0,) 2 = 28, (0,) T % (5-33)

The input spectrum and the system natural frequency can be expressed in
terms of frequency f (Hz) or o (rad/sec). In both cases the formulae are
formally the same.

From the variance F the standard deviation (root-mean-square) of the
response follows as

2

o, =1y
The r.m.s. response depends on the square root of the damping ratio.

The standard deviation determines the distribution of all values of the response,
as can be seen from equation 5-11 and Fig. 5.6, but the peak, i.e. maximum
value of the response indicated in Fig. 5.14 is of primary importance for design.
Peak Value of Response

During each period of observation T, one largest (peak) value of the response can

be established. This largest value depends on the duration of the observation, T,
and the apparent frequency v, which depends on the spectrum of the process and

(Hz) (5-34)

For a narrow band process such as the response of a lightly damped system, the
apparent frequency v is close to the natural frequency and thus, v =f, . The peak

values observed in individual observations may be assembled to yield a probability
density distribution (Fig. 5.15). The mean value of the peaks can be evaluated as:

~

y=go, (5-35)

in which the peak factor g = )_7/0'y can be calculated using the formula:
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g =f2log, vT + 22772 (5-36)

2log, vT

The peak factor ranges between about 2.5 and 4.5 (Fig. 5.16).
(see: Davenport, A.G., “The Distribution of the Largest Values of a Random
Function With Application to Gust Loading”, Proc. ICE, Vol. 28., No. 6739, June

1964, pp 187-196 ..... and
Rice, S.O. "Mathematical Analysis of Random Noise," Selected Papers on Noise

and Stochastic Processes, edited by N. Wax, Dover Publ., New York, 1954.)

Response to earthquakes. - With regard to equations 5-22 and 5-33, the variance
of earthquake response is

yi= iz&mzsyg (@,) (5-37)

A more accurate analysis should consider nonstationarity but the assumption of
stationarity is conservative.
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Problem 5.1: Predict the seismic response of the one storey shear building
given in below to the El Centro 1940 earthquake in terms of random vibration.
The power spectrum of that earthquake is given in Fig. 5.llc. Assume damping
ratio D = 2% and strong motion duration T = 30 s. (In Fig. 5.llc, the power
spectrum corresponds to the original peak ground acceleration of 0.3 g.)

A =y Each section of shear building is

supported by two columns having a
h depth, d of 600 mm
I =560 x 10° mm*
E =2.0x10°>Mpa
7 / d h=50m
— . The participating mass of the
- - - structure is:
S m = 30,000 kg (for one bay)
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5.4 RESPONSE OF MULTI-DEGREE -OF-FREEDOM SYSTEMS TO RANDOM
LOADING

5.4.1 Fully Correlated Load

The motion of the ground or the forces acting directly upon masses m; are often
random. If the forces have the same time history (phase shift) at each mass but
different amplitudes they are fully correlated. This is the case with ground
excitation when the effective forces are:

Pi(t) = (=)m,i, (t)
or with direct excitation,
Pi(t) = Pf(t)
where i (t)or f(t) are common for all masses. An example is a large wind gust

hitting a relatively small structure (Fig. 5.17). The response is again given by
equation 4.2, i.e.

u.(t)= Zq),j?]j (5-38) pr{t) - -®

in which n; is given by equation (5-11),

=L (t)  (5-39) P.) ——@

in which, for ground excitation

L= ma, (5-40a) P.(1) ’4%%%%
i T

or with external forces
——
; /

Fig. 5.17

L, =Y Po, (5-40b)

and
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If f(t) or U, is random it can be described by its power spectrum Sag (w)or S;(w)

called generally S(w). By equation 5-21a), the power spectrum of the right side of
equation.(5-39) is

S, (@) = 2S(w) (5-41)

Equation (5-39) is an equation of SDF system H
and therefore the spectrum of coordinate 7; is

by equation (5-29) !

{2)

where the square of the mode of the mechani-

cal admittance
2 2
1-2_|+aD?| 2
; ;

Variance of n; becomes:
H(ﬂ]
@,

GEDN NG

2
1 2 S®) ‘

J

2

(5-43)

L2 0
2 J
n: =—|S(w)

The motion is

or with distributed systems
u(x,t) = @, (x)n;(t)
i

The variance of this motion is obtained by squaring and averaging,
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.
J-( ®in?(t)+ > product termstt
- (5-44)

1 T n n n
=fj[zzq)ir®is77rﬂsjdt: 1:77,P; D
T

r=1s=1

The cross products between the generalized coordinates complicate the situation.
However, they can be neglected if

1) Natural frequencies are well separated
2) Damping is small or at least not very large.

Then
17 17
anunj (t) ot =Y @ —— [} (t)alt
i 2T -T
T~)oo
1 % —
As o jzﬁ(t)dt = 77].2 = the variance of generalized coordinate as given by
-T
Equation (5-43), the resonance of the displacement of mass m, is
2
H(ﬂJ dw
 :
J
The integral in equation (5-45) can be evaluated by means of the theory of
residua or numerically as already discussed. If damping is small and the spectrum

rather flat, an approximate solution indicated in equation (5-33) and Fig. 5.13 is
usually sufficiently accurate, i.e.

n L20°
w2 (t) = ch,,nj Z;cD;K—fZJS(a)) (5-45)
J= j 0

TS(a))|H(a))|2da) ~ S(w)T|H(a))|2da) = S(w, )%% (5-46)

With this approximation, equation (5-45) simplifies and the variance of the
displacement is
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Substituting forK,; = w?M,, itis
also

—u?(t)ziz":q>% Lj S(w;) 1 Z , L S(f)
ADG M o} e4rDS TM?OfR

J

(5-47)

The RMS displacement is o, = Ju?Z(t). Only one, two or three first modes usually

need to be considered. Very often, one mode is enough (the first or the second),
e.g. for buildings exposed to wind gusts or earthquake excitation. Max. (peak)
values follow from equation (5-35) and range from 3.5 to 4.5 RMS.

If the power spectrum is available as a function of frequency f, it is possible to
use either one as

S(w,.)zisaj)

If the damping ratio, D, is assumed to be different for each vibration mode, it
remains as D; behind the summation sign Z in equation (5-47).

Problem 5.2: Analyze the response of the five storey shear building to earthquake
excitation defined by the power spectrum shown in Fig. 5.11c (EI Centro, 1940).
Calculate:
(a) Peak response in individual modes ujjassuming the duration of the strong
motion T =30 s.
(b) Equivalent seismic forces q; =m0},

(c) Compare the results with those obtained by means of the pseudovelocity
spectrum.
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5.4.2 Partially Correlated Loads

When the loads P; acting at individual stations of a structure (Fig. 5.17) are not
fully correlated, their total effect on the response in the fundamental mode is
reduced. This reduction is very significant in the case of wind loading as is
discussed in Chapter 6. The analysis requires a greater amount of input infor-
mation and is more difficult but can lead to useful observations (see: Novak, M.
"Random Vibration of Structures”, Proc. 4th Intern. Conference on Application of
Statistics and Probability in Soil and Structural Engineering, Florence, 1983, pp.
539-550).
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