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Chapter 5 - Response To Random Loads 
 
5.1 General 
 
A random process differs from the deterministic processes dealt with in the 
preceding chapters in that it cannot be accurately predicted mathematically even if 
the past time history is known. Such a process is most meaningfully described in 
statistical terms. The basic statistical characteristics are reviewed first, presuming 
that the random process x(t) may represent loading of the structure or its response. 
 
A random process may be given in the form of one representative time history 
(Fig. 5.1) or by a set of sample functions collected into an ensemble (Fig. 5.2). 
When the statistical characteristics are extracted from the one long time history, 
the procedure involved is called temporal averaging. The analysis of the 
ensemble is known as ensemble averaging. Ideally, the time histories should 
extend from −∞→t  to  +∞→t  
 
5.2 Basic Statistical Characteristics 
 
Probability density function, )(xp . This function defines the probability that x will 
have a value in the range from x to x+dx. The typical bell-like shape of this function 
is indicated in Fig. 5.3. Because all values may occur: 
 
 ∫

+∞

∞−
= 1)( dxxp          (5-1) 

 
Probability distribution function, P(x). This function defines the probability of x 
being smaller than or equal to a certain value α and thus: 
 
 ∫ ∞−

=≤=
a

dxxpaxxP )()Pr()(       (5-2) 
 
This function is characterized by an S-like shape and is always bounded by the 
limits 1)(0 << xP  (Fig. 5.4). 
 
Mean value or expected value. This is the mean or average value of the 
function and can be defined for the function x(t) as: 
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Fig. 5.1 A random function 
 

 
Fig. 5.2  Ensemble of samples of a random function 

Fig. 5.3  Probability Density Fig. 5.4 Probability Distribution 
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Fig. 5.2a Typical Signatures of wind-Induced Accelerations of a Tall Building 
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The above components of acceleration can be combined 
to estimate the peak resultant acceleration as follows: 
 

2222 ˆˆˆ θ&&raaa yxR ++≤  
 
 
 

Summary of Fundamental Periods 
During Low Winds During High Winds Mode Analytical 

Estimate 
(sec) 

Avg. (sec) C.O.V. (%) Avg 
(sec) 

C.O.V. (%) 

1 N-S 9.0 6.26 5.6 7.16 1.4 
2 E-W 7.25 6.32 2.4 6.89 1.9 
3 Torsion 5.5 4.75 4.0 5.69 3.1 
 
 
 
Fig. 5.2b) Observed Accelerations and Corresponding Power Spectra of a 43-

Storey Building as well as Fundamental Periods 
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Realizing that all values have a total probability of occurring equal to 1, the 
mean value can also be expressed using the probability density function as 
 
 ∫

+∞

∞−
= dxxxpx )(         (5-4) 

 
Thus, the value x can be viewed as the coordinate of the centroid of the area 
under the curve p(x).  
 
Finally, the mean value can be obtained from the ensemble of samples by 
cutting through the ensemble at a certain time, e.g. t1, and calculating the 
average value of the samples (Fig. 5.2). This gives  
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Other notations used are >=<= xxEx )( . 
 
Mean-square value is the average value of x2(t), is denoted, as 

>=<= 222 )( xxEx and follows from the time history of x(t) as 
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1 22   (1st moment about the origin)  (5-6) 

 
or from the ensemble as 
 

 ∑
=

∞→
=

n

i
in

tx
n

x
1

1
22 )(1lim         (5-7) 

 
Variance is the mean-square value of the difference from the mean. Its notations 
are 22 )( xxx −=σ  and its value is: 
 

 ∫
+

−
∞→

−=
T

T
T

x dtxx
T

22 )(
2
1σ  (2nd moment about origin)   (5-8) 

or from the probability density function: 
 
 ∫

+∞

∞−
−= dxxpxxx )()( 2σ        (5-9) 

 
Standard deviation is the square root of variance and is, therefore, also called 
the root-mean-square value of x, or briefly r.m.s. Standard deviation is usually 
denoted as: 
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 22 )( xxxx −== σσ        (5-10) 
 
With regard to equations (5-1) and (5-9), the standard deviation can be viewed as 
the radius of gyration of p(x) about x . 
 
Standard deviation is an important magnitude and together with the mean value 
x  are the most important parameters which can characterize a probability 
distribution function. 
 
Gaussian or Normal probability density and distribution functions are defined as  
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and 
 

 ∫ ∞−

−
−

=
x

xx

x

dxexP x
2

2

2
)(

2
1)( σ

σπ
       (5-12) 

 
This distribution is called “Normal” because it fits most natural phenomena. It 
can be shown that a force described by a normal distribution produces response 
of linear systems which also has a normal distribution. 
 
 

 
 
 
Fig. 5.5  Normal Distributions with   Fig. 5.6 Probabilities associated with 

ax = and different values of σ    multiples of standard 
       deviation sd=σ  

 
 

- ∞   84% 
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The normal distribution is defined by the eman value, x , and standard deviation 
σσ =x . The magnitude of σ  indicates the spread of the values of x about the 

mean (Fig. 5.5). The dimensionless measure of this spread is the coefficient of 
variation defined as the ratio x/σ . 
 
The normal distribution is widely used and various probabilities following from it 
are tabulated. For example, the probability of x being smaller than or equal to 
the mean plus one standard deviation is 84%, i.e. 
 
 %84)( =+≤ σxxP   
 
This probability characterizes the pseudovelocity spectra plotted in Fig. 4.9. Other 
probabilities are indicated in Fig. 5.6. 
 
A given probability density of the process describes the percentage (proportion) 
of time for which x takes on values in a certain range. However, it does not 
provide any information on the rate of change in x(t) i.e., on the frequency 
characteristics of the process. A more complete description of a random process 
is contained in further statistical characteristics called correlation functions and 
power spectral densities. 
 
Autocorrelation function or more briefly correlation function is defined as the mean 
value of the product of x(t) and )( τ+tx where τ  is a time lag, i.e. 
 

 ∫
+

−
∞→

+=+=
T

T
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x dttxtx
T

txtxR )()(
2
1)()()( τττ     (5-13a) 

 
From the ensemble (Fig. 5.2), the correlation function is obtained as 
 

 ∑
=

∞→
+=

n

i
iinx txtx

n
R

1
)()(1lim)( ττ       (5-13b) 

 
By evaluating the average products for different values ofτ , the correlation 
function of a process is established. The correlation function is even, droops 
either in a smooth or oscillatory way and has the following properties: 
 

 0)0(   ),()(   ,0)(   ,)0( 2 =−==∞= R
d
dRRRxR
τ

ττ  

 
Since τ  is real time in seconds, the correlation function indicates the speed with 
which the correlation of the process diminishes and the time within which it vanishes 
(Fig. 5.7). 



CEE490b    
 
 

  Page  5-8 
 

 
 

 
Fig. 5.7 Typical Autocorrelation Functions Fig. 5.8 Two-sided and one-sided                            

Power Spectral Densities 
 
 
The above statistical characteristics allow for a few more definitions. 
 
If the statistical characteristics are independent of the reference time 1t  (Fig. 5.2) the 
process is called stationary: if they depend on time 1t  the process is nonstationary. 
The discussion here is limited to stationary processes. 
 
If the process is stationary and the temporal averages are equal to the ensemble 
averages, the process is ergodic. 
 
A centric process is a stationary process with x  = 0. Covariance is one of the 
measures of the extent to which two random variables x (t) and y (t) are related to 
each other or correlated. Covariance is defined as 
 
 >=<= )()()()(2 tytxtytxxyσ        (5-14) 
 
When x(t) and y(t) are completely independent 02 =xyσ ; 

02 ≠xyσ  indicates correlation between the two variables, e.g. input force and 
response. 
 
In stationary processes the mean value x is a constant and it is, therefore, (in 
favour of numerical accuracy to separate the mean value from the process and 
analyze just the fluctuating random part of it), xtxtx −=′ )()( . If x(t) is a load, x is 
its static component which produces static deflection about which the structure 
oscillates due to the effect of the fluctuating component )(tx ′ . Thus, the statistical 
analysis can be limited to the fluctuating component because 2)()( xRR xx += ′ ττ . 
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Power Spectral Density, S (f). This function describes the energy distribution of 
the process with regard to frequency and is defined as the Fourier Transform of 
the autocorrelation function )(τR , i.e. 
 
 ∫

∞

∞−

−= ττ τπ deRfS fi 2)()(        (5-15) 
 
This transformation yields an even, two-sided power spectrum indicated in Fig. 
5.8. Because negative frequencies do not have a technical meaning, it is usually 
preferable to define a one-sided power spectrum for positive frequencies only. 
The area under both types of the spectra has to be the same and thus, the 
magnitude of the one-sided spectrum is twice the magnitude of the two-sided 
spectrum (Fig. 5.8). Splitting the integration interval into two, ∞−  to 0 and 0 to 

∞+  and recalling that )()( ττ −= RR , the Fourier transform of the autocorrelation 
function reduces to a cosine Fourier transform and the one-sided power spectrum 
becomes 
 
 ∫

∞
=

0
2cos)(4)( ττπτ dfRfS        (5-16) 

 
The inverse Fourier transform of the spectrum yields the 
correlation function, 
 
 ∫

∞
=

0
2cos)()( ττπτ dffSR        (5-17) 

 
The Fourier transform pair defined by equations (5-16) and (5-17) is also known 
as the Wiener-Khintchin relationship. 
 
The term power spectrum stems from electrical applications in which it has the 
following physical meaning. Assume that x(t) is random voltage filtered through a 
narrow band filter and that the power passed by the filter is measured. Then, this 
power is proportional to the bandwidth of the filter and the spectral density of x(t) 
at the centre frequency of the filter. The total power describes the variance of the 
signal and thus, 
 
 ∫ ∫

∞ ∞
==

0 0
2 )()( ωω dSdffSx xx       (5-18) 

 
Expressing dfd πω 2= , equation (5-18) gives 
 

)(2)( ωπSfS =         (5-19) 
 
Equation (5-18) defines the most important property of the spectrum and also 
suggests the dimension of a spectrum, because dffS )( must have a dimension of 
x2. Consequently, SX(f) is in (dimension of x2)/frequency. Thus if x is 
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displacement, Sx ( f )  is in m2/s-1 = m2s; the power spectrum of acceleration 
is similarly m2/s4/s-1 = m2/ s-3 
 
Other forms of power spectra used are the normalized spectrum and the 
logarithmic spectrum. 
 
Normalized spectrum S'(f) is defined as 2/)()( σfSfS =′  and thus )()( 2 fSfS ′= σ  
and 
 
 ∫

∞
=′

0
1)( dffS          (5-20) 

 
Logarithmic spectrum is 2/)( σffSS =l , it is dimensionless and because  

df
f

fd e
1log = , 

 

 ∫
∞

=
0 2 1log)( fdffS

eσ
        (5-21) 

 
The relationship between )(fS′ and )(fS l is shown in Fig. 5.9. 
 

 
 
Fig. 5.9 Relationship between (a) - normalized spectrum and (b) - logarithmic 

spectrum 
 
When the process )(.)( txconsttx ′= , the spectrum is, with regard to equations  
(5-13) and (5-15) 
 
 ( ) (f)S(f)S '

x
2

x Const=        (5-21a) 
 
 (f)Sm(f)S

gy
2

P &&=         (5-22) 
 
 
where )(fS

gy&& is the spectrum of ground acceleration.  
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Examples of Random Processes. - Examples of typical random processes 
and their comparison with a deterministic harmonic process are shown in 
Fig. 8.10. Mathematical expressions for some correlation functions and the 
corresponding power spectra can be found in Ref. 10. Power spectra of a few 
earthquake ground motions are plotted in Fig. 5.11. 
 
  x(t)  p(x)  Sx(f)   Rx(τ) 

 
Fig. 5.10 Typical random processes and their description in terms of probability 

density, power spectral density and autocorrelation function. 
 

 
 
 

5/62
102

10V )f(2
VL/V4Κ(f)S

+
=   

 
 
 
 
 
 
 
 

 
Fig. 5.10a Power spectral density of wind velocity fluctuations Sv(f) and schematic 

of fluctuations in wake (Davenport, Harris) 
 

Κ  = surface roughness factor = 0.08 to 0.14, 
L = scale length = 1200m,  

10V = mean wind velocity 10 m above ground 

in m/s and 10/VfLf = . 
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ω
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gS −=  

 
where:  
α  = 8.1 x 10-3, 
g = 9.81 m/s 2 and  

oω  = g/U = frequency of spectrum peak 

 
 
 
 
 
 
 
 

 
Fig. 5.10b Pierson-Moskowitz spectrum of sea surface elevation as function of 

wind speed U. 
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Fig. 5.11 . Power Spectra of Earthquake Ground Acceleration 
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5.3 Response to Random Load in one Degree of Freedom  
 
Relationship between Input and Output 
 
A periodic force P(t) with period 1/1 fT =  can be represented by a complex Fourier 
series as: 
 

 ∑
∞

∞−

= tfir
r ectP 12)( π ,  ∫−

−=
2/

2/

2 1)(1 T

T

tfir
r dtetP

T
c π , r=1,2 …..   (5-23) 

 
The response of a SDF system to such a load can be obtained by means of 
superposition of responses to individual components r in terms of the frequency 
response function (admittance). The harmonic load  
 
 ti

oePtP ω=)(  
 
yields response 
 

 tio eH
k
Pty ωω)()( =  

 
where 
 

 

oo f
fDi

f
f

fH

21

1)( 2

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=        (5-24) 

 
However, the response to a series of harmonic loads (equation 5-23) 
 

 ∑
∞

∞−

= tfir
rr efHc

k
ty 12)(1)( π , with 1frfr =      (5-25) 

 
The mean square response can be expressed in terms of Parceval's 
 

 ∑
∞

∞−

=
22

rcy          (5-26) 

 

because (5-25) is again a Fourier series with amplitudes )(1
rr fHc

k
. Hence 

 

 ∑
∞
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2
2 )(1

rr fHc
k

y        (5-27) 
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realizing that 
 
 2

2
2

1
2

21 yyyy =  
 
A non-periodic (random) force can only be expressed in the above manner if 
period T is extended to ∞ , thus from (5-27) 
 

 ∑
∞

∞→
=

0

22
2

2 )(2lim1
rrT

fHc
k

y       (5-28) 

 
as 2

rc  and 2)( rfH  are even functions. Substitution for cr from 5-23 gives 
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With period ∞→T  
 

 dfT →/1 , ∑ ∫ ∫
∞ ∞

−

− →→
0 0

2/

2/

2 )()(, 1

T

T

tfir ifAdtetP π  as ffrf r →=1  and )()( fHfH r →  

 
Also, the mean square response can be expresses by means of its power spectrum, 

∫
∞

=
0

2 )( dffSy y . Hence: 
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As 
 

 )()(2lim 2 fSifA
T pT

=⎥⎦
⎤

⎢⎣
⎡

∞→
 

 
 
i.e. the spectrum of the excitation P(t), the relation between the spectrum of the input 
and the spectrum of the output is: 
 

 2
2 )()(1)( fHfS

k
fS py =  = )()( 2 fSif pα      (5-29) 
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in which 2)(fH  is the square of the modulus of the admittance function, which is 
equal to the square of the dynamic magnification factor and is: 
 

 
( )[ ] 2222

22

)/(4/1
1)(

oo ffDff
fH

+−
== ε      (5-30) 

 
The relationship between the input and the output described by equation 5-29 is 
shown in Fig. 5.12. 

 
Fig. 5.12 The relationship between spectrum of input and spectrum of output
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With response spectrum defined by equation 5-21, the mean square response 2y is 
 

 ( )∫ ∫
∞ ∞

==
0 0

2
2

2 )(1)( dffHfS
k

dffSy py      (5-31) 

 
or in terms of circular frequency 
 

 ∫ ∫
∞ ∞

==
0 0

2 )(
2

)(2 ωω
π
ωωπ dSdSy yy  

 
From equation 5-31 the rms displacement having the dimension of amplitudes, is 

yy σ=2 . The only complication is that the integral in equation 5-31 cannot be 
generally evaluated in closed form. It can be evaluated approximately as: 
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∫∫
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2

4
)(1)(1
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π
     (5-32) 

  
This approximate evaluation is based on replacing 2)(fH  by unity for frequencies 
from 0 to fo and on replacing the force power spectrum SP (f) by a constant (white) 
spectrum SP (f o) whose magnitude is equal to the force spectrum for the natural 
frequency of the system, fo (Fig. 5.13). The first part of equation 5-32 is called the 
background effect and the second part the resonant effect. 
 
If greater accuracy is needed, the integral in equation 5-31 can be evaluated using 
the theory of residua or numerical integration. 

 
 

Fig. 5.13 Approx. evaluation of response  Fig. 5.14 Peak of random response 



CEE490b    
 
 

  Page  5-18 
 

When the damping is small and the spectrum flat, the second part of equation  
5-32 yields sufficient accuracy and thus, the variance of the response is 
approximately 
 

 
D

S
kD

S
kD

ffS
k

y o
oP

o
oP

o
oP

ωπω
π
ωπωππ

4
)(1

24
)(21

4
)(1

222
2 ==≅   (5-33) 

  
The input spectrum and the system natural frequency can be expressed in 
terms of frequency f (Hz) or ω  (rad/sec). In both cases the formulae are 
formally the same. 
 
From the variance 2y  the standard deviation  (root-mean-square) of the 
response follows as 
 

 2yy =σ  
The r.m.s. response depends on the square root of the damping ratio. 
 
The standard deviation determines the distribution of all values of the response, 
as can be seen from equation 5-11 and Fig. 5.6, but the peak, i.e. maximum 
value of the response indicated in Fig. 5.14 is of primary importance for design. 
 
Peak Value of Response 
 
During each period of observation T, one largest (peak) value of the response can 
be established. This largest value depends on the duration of the observation, T, 
and the apparent frequency ν , which depends on the spectrum of the process and 
is: 
 

 
∫

∫
∞

∞

=

0

0

2

)(

)(

dffS

dffSf
ν   (Hz)       (5-34) 

 
For a narrow band process such as the response of a lightly damped system, the 
apparent frequency v is close to the natural frequency and thus, of≅ν . The peak 
values observed in individual observations may be assembled to yield a probability 
density distribution (Fig. 5.15). The mean value of the peaks can be evaluated as: 
 
 ygy σ≅ˆ          (5-35) 
 
in which the peak factor yyg σ/ˆ=  can be calculated using the formula: 
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T
Tg

e
e ν
ν

log2
5772.0log2 +=       (5-36) 

 
The peak factor ranges between about 2.5 and 4.5 (Fig. 5.16).  
(see: Davenport, A.G., “The Distribution of the Largest Values of a Random 
Function With Application to Gust Loading”, Proc. ICE, Vol. 28., No. 6739, June 
1964, pp 187-196 ….. and  
Rice, S.O. "Mathematical Analysis of Random Noise," Selected Papers on Noise 
and Stochastic Processes, edited by N. Wax, Dover Publ., New York, 1954.) 
 
Response to earthquakes. - With regard to equations 5-22 and 5-33, the variance 
of earthquake response is 
 

 )(
4

1 2
2

2
oy

o
g

Sm
Dk

y ω
ωπ

&&=        (5-37) 

  
A more accurate analysis should consider nonstationarity but the assumption of 
stationarity is conservative. 

Fig. 5.15 Probability distributions of all values and peak values 
 
 
 
 
 
Fig. 5.16 
 
Peak Factor 
vs. Tν  
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Problem 5.1: Predict the seismic response of the one storey shear building 
given in below to the El Centro 1940 earthquake in terms of random vibration. 
The power spectrum of that earthquake is given in Fig. 5.llc. Assume damping 
ratio D = 2% and strong motion duration T = 30 s. (In Fig. 5.llc, the power 
spectrum corresponds to the original peak ground acceleration of 0.3 g.) 
 
 

 
 
 
Each section of shear building is 
supported by two columns having a 
depth, d of 600 mm 
 
I = 560 x 106 mm4 

E = 2.0 x 105 Mpa 
h = 5.0 m 
 
The participating mass of the 
structure is: 
 
m = 30,000 kg (for one bay)

l

h

y
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5.4 RESPONSE OF MULTI-DEGREE -OF-FREEDOM SYSTEMS TO RANDOM 
LOADING 
 
5.4.1 Fully Correlated Load 
 
The motion of the ground or the forces acting directly upon masses mi are often 
random. If the forces have the same time history (phase shift) at each mass but 
different amplitudes they are fully correlated. This is the case with ground 
excitation when the effective forces are: 
 
 )()()( tumtP gii &&−=  
 
or with direct excitation,  
 
 )()( tfPtP ii =  
 
where )(tug&& or )(tf  are common for all masses. An example is a large wind gust 
hitting a relatively small structure (Fig. 5.17). The response is again given by 
equation 4.2, i.e. 
 
 ∑Φ=

j
jiji tu η)(    (5-38) 

in which jη  is given by equation (5-11), 
 
 )(2 tfLKDMM jjjjjjjjj =++ ηηωη &&&  
    )(tuL gj &&=    (5-39) 
 
in which, for ground excitation 
 
 ∑ Φ=

i
ijij mL     (5-40a) 

 
or with external forces 
 
 ∑ Φ=

i
ijij PL     (5-40b) 

          Fig. 5.17 
and 
 
 jjj MK 2ω=  
 

 

P (t) 1 

P (t) n 

P (t) i 
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If f(t) or gu&&  is random it can be described by its power spectrum )(ω
guS && or )(ωfS  

called generally )(ωS . By equation 5-21a), the power spectrum of the right side of 
equation.(5-39) is 
 
 )()( 2 ωω SLS jj =    (5-41) 
 
Equation (5-39) is an equation of SDF system 
and therefore the spectrum of coordinate jη  is 
by equation (5-29) 
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where the square of the mode of the mechani-
cal admittance 
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Variance of jη  becomes:  
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The motion is 
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j
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or with distributed systems 
 

 ∑
∞
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The variance of this motion is obtained by squaring and averaging, 
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The cross products between the generalized coordinates complicate the situation. 
However, they can be neglected if 
 

1) Natural frequencies are well separated 
2) Damping is small or at least not very large. 

 
Then 
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As ∫
−

=
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2
1 ηη  = the variance of generalized coordinate as given by  

Equation (5-43), the resonance of the displacement of mass im  is 
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The integral in equation (5-45) can be evaluated by means of the theory of 
residua or numerically as already discussed. If damping is small and the spectrum 
rather flat, an approximate solution indicated in equation (5-33) and Fig. 5.13 is 
usually sufficiently accurate, i.e. 
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With this approximation, equation (5-45) simplifies and the variance of the 
displacement is  
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Substituting for jjj MK 2ω= ,  it is 
also 
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The RMS displacement is )(2 tuiui
=σ . Only one, two or three first modes usually 

need to be considered. Very often, one mode is enough (the first or the second), 
e.g. for buildings exposed to wind gusts or earthquake excitation. Max. (peak) 
values follow from equation (5-35) and range from 3.5 to 4.5 RMS. 
 
If the power spectrum is available as a function of frequency f, it is possible to 
use either one as 
 

 )(
2
1)( jj fSS
π

ω =  

 
If the damping ratio, D, is assumed to be different for each vibration mode, it 
remains as Dj behind the summation sign ∑ in equation (5-47). 
 
Problem 5.2: Analyze the response of the five storey shear building to earthquake 
excitation defined by the power spectrum shown in Fig. 5.11c (El Centro, 1940). 
Calculate: 

(a) Peak response in individual modes uij assuming the duration of the strong 
motion T = 30 s. 

(b) Equivalent seismic forces ijjiij umq ˆ2ω=  
(c) Compare the results with those obtained by means of the pseudovelocity 

spectrum. 
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5.4.2 Partially Correlated Loads 
 
When the loads Pi  acting at individual stations of a structure (Fig. 5.17) are not 
fully correlated, their total effect on the response in the fundamental mode is 
reduced. This reduction is very significant in the case of wind loading as is 
discussed in Chapter 6. The analysis requires a greater amount of input infor-
mation and is more difficult but can lead to useful observations (see: Novak, M. 
"Random Vibration of Structures", Proc. 4th Intern. Conference on Application of 
Statistics and Probability in Soil and Structural Engineering, Florence, 1983, pp. 
539-550). 
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