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6.4 The Along-Wind Response of Line-Like Structures (after Davenport) 
 
We have examined the response of small, point-like structures to wind. These 
structures are those that are sufficiently small, so that the bulk of the energy of the 
turbulence of gusting is at wavelengths much greater than the typical dimension of 
the structure. A line-like structure, on the other hand is one where that has 
significant dimension transverse to the wind, however remains small in the sense 
that the smallest wavelengths likely to be of significance must be large compared to 
the breadth of the structure. The approach is applicable to slender towers, 
transmission lines and some long span bridges. 
 
The load per unit length on a slender structure of width B and length L may be 
expressed as: 
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The response of the structure to the fluctuating component of the force, )(tBuCU Dρ , 
may be computed mode-by-mode using modal analysis. If the mode shape for the 
ith mode is )(ziµ , then the modal force, )(tFi , is as follows; 
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The spectral density function )(fSF  then becomes; 
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in which; 
 
 )(fSv   is the spectrum of turbulence 

),,( fzzR ′  is the narrow band correlation function or normalized co-
spectrum of turbulence 

 
The mean square value of the modal coefficient 2

ia  is then obtained from the 
relationship; 
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in which; 
 

 ζ  is the damping as a fraction of critical 
if   is the natural frequency of the ith mode 

iM   is the Generalized Mass of the ith mode 
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The displacement of the structure can now be computed by the superposition of 
modes as follows; 
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or, in terms of the mean-square response; 
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The mean-square bending moment at position, z is given by: 
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in which BMi (z) is the bending moment at position z, when the deformed shape is 

)(ziµ . If the spanwise distribution of force varies due to spanwise changes of 
diameter, the drag coefficient, the mean wind velocity and / or velocity spectrum,  
Equation 6-20 can be written: 
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where 
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ξ  is a normalized coordinate, Lz /=ξ  and )(ξγ  is a function incorporating the span 
-wise changes in diameter, the drag coefficient, the mean wind velocity and velocity 
spectrum. The function 2)(fJ  is called the “Joint Acceptance Function” and defines 
the sensitivity between the turbulence and the structural modes of vibration, which is 
critical in defining the response of the structure. 
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The Joint Acceptance Function 
 
Equations (6-25) and (6-21) define the link between the gust fluctuations (which are 
described by the velocity spectrum )(fSv ) and the modal force fluctuations and 
displacements (provided by the Joint Acceptance Function). This function depends 
on the mode shape and the velocity field, which can vary from structure to structure 
as indicated in Figure 6.9. 
 
The lamp standard in (a) can oscillate in both a fore and aft as well as in a twisting 
mode, however, the wind excitation is concentrated at essentially one elevation, 
namely that of the lamps. In the vertical structures in (b-d), the wind speed varies 
with height; the fundamental mode of the building in (b) is nearly a straight line. The 
diameter of the chimney in (c) varies with height and has a fundamental bending 
type of mode shape. The guyed mast in (d) will have mode shapes consisting of 
several half-waves. The horizontal bridge structures in (e) and (f) will likely have 
near constant mean wind velocity along the span. The suspension bridge will have 
near-sinusoidal mode shapes, while the cantilever bridge will have a twisting mode 
about the axis of the pier as well as one in the fore and aft direction. 
 
For a slender structure it is common practice to assume that the correlation of the 
forces is the same as that for the transverse correlation of the longitudinal 
component of the wind. That is; 
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 where 
V
cfL

=φ , a dimensionless frequency, and c is the correlation coefficient, 

commonly found to be between 8-10. 
 
The JAF can now be written: 
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Fig. 6.9 Oscillations of structures in turbulent wind (after Davenport)
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Table 6.1 indicates the form of the Joint Acceptance Function for a number of 
common mode shapes, assuming that 0.1)( =ξγ , or there is no variation in the force 
per unit length. The functions are also plotted in Figures 6.10 and 6.11. 
 
Several features of these functions are worth noting: 
 
a) The mode shapes composed of deflections of the same sign decrease 

monotonically for higher frequencies and can be well represented by 
approximations of the form 

φBA
fJ

+
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b) The antisymmetric shapes have no response for small values of φ  (i.e. for 

large gust wavelengths). The gust then envelops the entire structure and the 
antisymmetric mode shape neutralizes its effect. These mode shapes have a 
peaked JAF, indicating that there will be a maximum response at a specific 
wavelength.  
 

c) Mode shapes having deflections of opposite sign, but not necessarily 
antisymmetric have a finite lower asymptote as 0→φ , reach a peak for 
intermediate values of φ  and fall off again as 1/φ  at larger values of φ . It is 
important to note that for sinusoidal mode shapes, the peak of the JAF occurs 
at 23 −≈ nφ , where n is the number of half waves. 

 
The qualification of “line-like” in the use of the Joint Acceptance Function implies that 
all significant wavelengths influencing the structural response are greater than the 
diameter of the structure (i.e. 1/ <<VfD ). The flow is then “quasi-steady” For 
structures such as transmission lines this assumptions is accurate, however as the 
structure becomes larger and the slenderness decreases, (from chimneys to bridge 
decks to buildings, for example) this assumption will exaggerate the response at 
higher frequencies and provide overly conservative estimates of the wind loads. 
Introducing the Aerodynamic Admittance Function, 2)(fA , allows for the reduction in 
force for the less slender structures. 
 
In most cases in the estimation of the response of a structure to wind it is rarely 
necessary to extend the summation of equation (6-20) beyond more than a few 
modes, and in many cases the first term (especially in the case of buildings of 
moderate height) is quite adequate.  This is the basis for the wind load provisions in 
the National Building Code of Canada. Long span bridges may require several 
modes to adequately represent the loading with sufficient detail in order to 
adequately predict the force effects. To date, satisfactory wind codes for long span 
bridges have not been developed and wind tunnel testing must be undertaken to 
define loads for design. 
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