Review of Random Loading Concepts - I

- We require new mathematical tools to describe "random" loads and responses of structures
- Random loads vary in:
 - o Magnitude
 - o Time
 - o Spatially
- We use:
 - Probability Distributions
 - Power Spectra and Auto-correlations
 - o Cross-Spectra and Cross-correlations

Stationary Random Process:

Strict Stationarity

 All statistical properties are invariant with time <u>Weak Stationarity</u>

• Mean μ_x and autocorrelation $\rho_x(\tau)$ are invariant with time <u>Ergodic Process</u>

- Stationary process where the statistical properties of one sample are identical to the ensemble statistics
- There are fully developed mathematical methods available for Ergodic Processes and thus there are enormous advantages if a process can be regarded as stationary. This includes processes that can be described as having *weak stationarity* or *local stationarity*

Auto-correlation

•
$$R_x(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T (x(t) - \overline{x}) (x(t - \tau) - \overline{x}) dt$$

•
$$R_x(\tau) = R_x(-\tau)$$
 (an "even" function)

•
$$R_x(\tau = 0) = \sigma_x^2 = \lim_{T \to \infty} \int_0^t (x(t) - \overline{x})^2 dt$$

•
$$\frac{dR(\tau=0)}{d\tau}=0$$

•
$$R(\tau = \infty) = 0$$

• If $x(t) = y_1(t) + y_2(t) + y_3(t) + \dots + y_n(t)$ where the y 's are independent, then $R_x(\tau) = R_{y1}(\tau) + R_{y2}(\tau) + \dots + R_{yn}(\tau)$ and since $R_x(\tau = 0) = \sigma_x^2$, then $\sigma_x^2(\tau) = \sigma_{y1}^2 + \sigma_{y2}^2 + \dots + \sigma_{yn}^2$

Power Spectrum

- Two-sided spectrum $G(f) = \int_{-\infty}^{\infty} R(\tau) e^{-i2\pi f\tau} d\tau$
- One-sided spectrum S(f) defined for $f \ge 0$

S(f) = 2G(f) and recalling that $R(\tau) = R(-\tau)$

$$S(f) = 4\int_{0}^{\infty} R(\tau)\cos(2\pi f\tau)d\tau$$
This is a "Cosine Fourier Transform Pair"
$$R(\tau) = \int_{0}^{\infty} S(f)\cos(2\pi f\tau)df$$

- The area under the power spectrum equals the variance, σ^2
- Dimensions of power spectrum are (dimension of x^2)/frequency, for example if "x" is displacement in metres, then the unsits of the power spectrum are: m^2 / Hz
- Power spectra are often normalized by the variance, σ^2 , so the area is 1.0
- Examples of Random Processes:

