Review of Random Loading Concepts - I

- We require new mathematical tools to describe "random" loads and responses of structures
- Random loads vary in:
o Magnitude
o Time
o Spatially
- We use:
o Probability Distributions
o Power Spectra and Auto-correlations
o Cross-Spectra and Cross-correlations

Stationary Random Process:

Strict Stationarity
o All statistical properties are invariant with time
Weak Stationarity
o Mean μ_{x} and autocorrelation $\rho_{x}(\tau)$ are invariant with time

Ergodic Process

o Stationary process where the statistical properties of one sample are identical to the ensemble statistics

- There are fully developed mathematical methods available for Ergodic Processes and thus there are enormous advantages if a process can be regarded as stationary. This includes processes that can be described as having weak stationarity or local stationarity

Auto-correlation

- $R_{x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}(x(t)-\bar{x})(x(t-\tau)-\bar{x}) d t$
- $R_{x}(\tau)=R_{x}(-\tau) \quad$ (an "even" function)
- $R_{x}(\tau=0)=\sigma_{x}^{2}=\lim _{T \rightarrow \infty} \int_{0}^{T}(x(t)-\bar{x})^{2} d t$
- $\frac{d R(\tau=0)}{d \tau}=0$
- $R(\tau=\infty)=0$
- If $x(t)=y_{1}(t)+y_{2}(t)+y_{3}(t)+\ldots .+y_{n}(t)$ where the y ' s are independent, then
$R_{x}(\tau)=R_{y 1}(\tau)+R_{y 2}(\tau)+\ldots .+R_{y n}(\tau)$ and since $R_{x}(\tau=0)=\sigma_{x}^{2}$, then
$\sigma^{2}{ }_{x}(\tau)=\sigma^{2}{ }_{y 1}+\sigma^{2}{ }_{y 2}+\ldots .+\sigma^{2}{ }_{y n}$

Power Spectrum

- Two-sided spectrum $G(f)=\int_{-\infty}^{\infty} R(\tau) e^{-i 2 \pi f \tau} d \tau$
- One-sided spectrum $S(f)$ defined for $f \geq 0$
$S(f)=2 G(f)$ and recalling that $R(\tau)=R(-\tau)$

$$
\left.\begin{array}{l}
S(f)=4 \int_{0}^{\infty} R(\tau) \cos (2 \pi f \tau) d \tau \\
R(\tau)=\int_{0}^{\infty} S(f) \cos (2 \pi f \tau) d f
\end{array}\right\} \text { This is a "Cosine Fourier Transform Pair" }
$$

- The area under the power spectrum equals the variance, σ^{2}
- Dimensions of power spectrum are (dimension of x^{2})/frequency, for example if " x " is displacement in metres, then the unsits of the power spectrum are: m^{2} / Hz
- Power spectra are often normalized by the variance, σ^{2}, so the area is 1.0
- Examples of Random Processes:

