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Review of Response to Random Loads 
 

• We require new mathematical tools to describe “random” loads and 
responses of structures 

• Random loads vary in: 
o Magnitude 
o Time 
o Spatially 

• We use: 
o  Probability Distributions 
o Power Spectra and Auto-correlations 
o Cross-Spectra and Cross-correlations 

 
Stationary Random Process: 
 
 Strict Stationarity  

o All statistical properties are invariant with time 
Weak Stationarity 

o Mean xµ  and autocorrelation )(τρ x  are invariant with time 
Ergodic Process 

o Stationary process where the statistical properties of one sample 
are identical to the ensemble statistics 

 
• There are fully developed mathematical methods available for Ergodic 

Processes and thus there are enormous advantages if a process can be 
regarded as stationary. This includes processes that can be described as 
having weak stationarity or local stationarity 
 

Auto-correlation 
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Power Spectrum 
 

• Two-sided spectrum ∫
∞

∞−

−= ττ τπ deRfG fi 2)()(   

• One-sided spectrum S(f) defined for 0≥f  
 

)(2)( fGfS =  and recalling that )()( ττ −= RR  
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This is a “Cosine Fourier Transform Pair” 

• The area under the power spectrum equals the variance, 2σ  
• Dimensions of power spectrum are (dimension of 2x )/frequency, for example 

if “x” is displacement in metres, then the unsits of the power spectrum are: 
Hzm /2  

• Power spectra are often normalized by the variance, 2σ , so the area is 1.0 
• Examples of Random Processes: 

 
  x(t)  p(x)  Sx(f)   Rx(τ) 
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Power Spectra 
 
We defined a Power Spectral Density Function: 
 

 ∫
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G(f) is a symmetric function about f = 0. Since f < 0 have little physical meaning, one 
defines a one-sided power spectrum as S(F) for 0≥f . 
 
To conserve equality of variance; 
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Properties of Power Spectra 
 

• Relationship between the Probability Density Function (PDF) and the Spectral 
Density Function (SDF): 

 
If x(t) is Gaussian;   
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When )()( taxty =  … )()( 2 fSafS xy =  and 222
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e.g.  if  )()( tymtp g&&−=  then )()( 2 fSmfS

gyp &&=  
 
If x(t) is a time-varying quantity, then 
 

 )(xpx  … amplitude domain 
)(fSx  … frequency domain 
)(τxR  … correlation with itself at time lag τ   (see page 106) 
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How do we describe the time variation of a periodic function? 
using a Fourier Series: provides information on variation in frequency  

     at ω , 2ω , 3ω  etc. (at discrete harmonics) 
 
How do we describe a Random Variable in Time? 

using a Fourier Integral: provides information on variation at all values of ω  

 ∫
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Response of Structures to Random Loads 
 
If  fti

o
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o ePePtP πω 2)( ==   (a single harmonic), then the response of the structure 
becomes: 
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If the load consists of many harmonics; 
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If we represent a random load by a periodic function with ∞→T  (i.e it never 
repeats itself) 
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Variance of Response to Random Load P(t) 
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      Difficult to evaluate in closed form  
 
A conservative approximation is: 
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Resonant 

Background 
 

NOTE: 
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Peak Value of a Random Process (pg 114) 
 
 
 ygyy σ+=ˆ  (see fig 8.15) 

 
RMS value or standard deviation 

Peak factor 
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The cycling rate, or apparent frequency 

 
Response to Gusting Wind 
 
Point Structure is one where )(fA λ<<  
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  mean   time varying 

 )(4)( 2

2

fS
V

FfS v
D

D =  

 
BUT Real structures have )(fA λ≈  
 
Therefore the instantaneous wind induced pressures are not fully correlated over the 
frontal area of the body, so: 
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    The Aerodynamic Admittance 
 

1
2

→⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

f

A
λ

χ  as  0→
f

A
λ

   and 0
2

→⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

f

A
λ

χ  as  ∞→
f

A
λ

    

 
The National Building Code of Canada (NBCC) 
 
 Uses a Gust Factor approach 
 
 yCy g=ˆ   
   mean 
  gust effect factor  

peak   
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The NBCC contains a procedure for the evaluation of gC   
 For: 

i) simple shape buildings 
ii) 1st sway mode 
iii) mass distribution must be constant with height 
iv) only drag is considered (lift or crosswind response is not predicted) 


