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REVIEW OF SDOF CONCEPTS 
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Fig. 1  SDOF Oscillator 
 
Equation of motion describing “dynamic” equilibrium: 
 
 

)(tFkyycyM =++ &&&       (1) 
 
 
it is useful to examine several limiting cases: 
 
 
A)  FREE UNDAMPED VIBRATIONS (HOMOGENEOUS EQUATION) 
 

i.e. F(t) = 0 and c=0 
 

0=+ kyyM &&        (2) 
 

and assuming the motion of the mass can be described by the sum of 
sinusoidal components: 

 
tCtCty oo ωω cossin)( 21 +=     (3) 

 

where 
M
k

o =ω  the “undamped” natural frequency 

 
Constants C1 and C2 are determined from initial conditions (e.g. if the mass is 
held at a given initial displacement and released, C1 = 0 and C2 = yo ) 

 
the motion can also be written in terms of an initial displacement and a phase-
shift: 
 

)sin()( φω += tyty oo      (4) 
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 where the initial displacement oy , is: 
 
  )( 2

2
2
1 CCyo +=       (5a) 

 
 and the phase-shift φ , is: 
 
  )/(tan 12

1 CC−=φ       (5b) 
 
B)  FREE DAMPED VIBRATIONS (HOMOGENEOUS EQUATIONS) 
 
  
  0=++ kyycyM &&&   divide by M 
 

  0=++ y
M
ky

M
cy &&&       (6) 

 
 and introducing; Mko /2 =ω  and Mc /2 =α  
 
  02 2 =++ yyy oωα &&&       (7) 
 
 a Particular Solution to this differential equation is: 
 
  ptCey =  so ptCpey =&  and pteCpy 2=&&  
 
 substituting, we now get a quadratic equation in the variable, p: 
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     (8abc) 

 
 defining the damping ratio as: ςωα == /D , then: 
 
  12

2,1 −±−= Dp oωα      (9) 
 
 therefore the solution (magnitude of the motion), depends on the magnitude 
of the damping D, relative to 1. There are 3 possible situations: 
 
D is less than 1 (termed subcritical damping) 
D is equal to 1 (termed critical damping), or 
D is greater than 1 (termed supercritical damping) 
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Fig. 2. Free Damped Oscillations (f = 1.0 Hz,  D = 0.032, critical and 

supercritical) 
 
Only the Subcritical case with D < 1, results in oscilliatory response. The other two 
cases are not relevant to civil engineering. 
 
For D < 1 
 
The solution of free vibrations becomes: 
 
 )sin()( '

oo
t

o teyty φωα += −       (10) 
 

where 21 Doo −=′ ωω  , the damped natural frequency  
(recall that the undamped natural frequency, Mko /=ω ) 

 
For most civil engineering applications, the structural damping is much less than 1, 
typically of the order of 0.001 (for a bridge cable) to 0.05 (for cracked concrete) so 
for practical purposes, oo ωω ′=  
 
There are two important cases that arise with free damped vibrations: 
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i) when the initial velocity is zero, but with a finite initial amplitude 
ii) when the initial amplitude is zero, but with a finite initial velocity  

 
i) Ayo =  and 0=oy&  
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The structural damping of a system (e.g. chimney, flagpole, bridge) can be 
estimated by utilizing this relationship. Often, a structure can be given an initial 
displacement, A, then released and the subsequent decay with amplitude recorded.  
 
The decrease in amplitude between successive cycles of vibration is dependent on 
the damping (recall that ωα /=D ). The amplitude y(t) for multiples of the period of 
vibration N* )/2( oωπ at the same point in the oscillation, will yield a straight line when 

AAN /1+  is plotted vs. N 

Fig. 3.  Fit to Decay in Peak Amplitude Ratio vs. Cycle Number 

From the above fit, the structural damping would be: 2.0
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ii) 0=oy  and Vyo =&  
 

 teVteVty o
t

o
o

t

o

ω
ω

ω
ω
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′

=     (12) 

 
An example of this type of situation would be with a body initially at rest and 
experience an impact with another body. 

 
 
C) RESPONSE TO HARMONIC EXCITATION 
 

tFkyycyM o ωcos=++ &&&       (13) 
 

The steady-state response (once the influence of the initial conditions is lost) is: 
 

 )cos()( φωη += t
K
Fty o       (14) 

where st
o y

K
F

= , the static deflection under force, oF  

 
,  the dynamic amplification factor, or      
the mechanical admittance   
  (15a) 

 
 
 

, the phase angle between the excitation and 
the response    (15b) 

 
 
The complete solution is the summation of the steady-state response and the 

solution of the “Homogeneous” equation ( 0=++ kyycyM &&& ), when evaluated with 
specific initial conditions. 

 
 

)sin()cos()( '
oo

t
ost teytyty φωφω αη +++= −    (16) 

 
y(t) = Steady-state Solution + Transient Solution 
 
the transient solution “damps” out or disappears when the initial disturbance 
is past. 
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STEADY-STATE RESONANT VIBRATIONS 
 
At resonance, the excitation frequency, ω  is equal to the natural frequency, oω , and 
the dynamic amplification factor becomes: 
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The phase angle becomes: 
 
  

 290
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⎤
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The response becomes: 
 

 )
2

cos(
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1)( πω −⎟
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D
yty st       (18) 

The maximum response is: 
 

 
D

yty st 2
1)( max =        (19) 
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a) Constant Force Excitation 

tPtP o ωcos)( =  and )cos()( φωη += t
k
Pty o  

 

 

b)  Quadratic Excitation, where mem
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Fig. 4. Dimensionless response to Harmonic Loads  
(Dynamic Amplitudes and Phase Shift) 


