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SOME ASPECTS OF PROBABILITY THEORY -  (N. Isyumov / P. King) 
 
 

Deterministic Processes: 
 
 A deterministic process can be described by a mathematical model, from 
which the exact state of the process can be predicted.  Namely, if we conduct an 
experiment with known inputs we are able to predict the outcome in exact form. 
 
 
Stochastic or Random Processes: 
 
 A stochastic or random process is one which, although describable by a 
mathematical model, cannot be predicted exactly either due to the uncertainties 
associated with the inputs or due to the complexity of the physical process.  
Consequently, if we carry out an experiment we are not certain of the exact outcome 
but can only associate certain likelihoods to particular states of the process. 
 
 
Real Processes: 
 
 In real life, all processes are random, even though in many cases if the 
uncertainties are small we are prepared to disregard the variability of a process and 
treat it as a deterministic one.  Whether or not a particular problem can be treated as 
a deterministic process depends upon the degree of uncertainty and how sensitive 
the outcome of the process is to this uncertainty. 
 
 If the variability or randomness of a process cannot be disregarded all 
formulations are based on the mathematic theory of probability.  Concepts of 
probability relate to descriptions of the variable in the amplitude domain.  The 
concept of the probability distribution of the magnitude of a particular variable forms 
a complete description if only the magnitude rather than both the magnitude and its 
rate of change in time is important.  For example, in defining the rupture strength of 
steel bars, we are only concerned with the variation in strength from bar to bar and 
thus defining the probability distribution of the rupture strength completely describes 
the process.  On the other hand, if we are concerned with the response of say an 
oscillator to a random signal we are not only concerned with the probability 
distribution of the signal but would also like to know its variation in the time domain.  
In other words, how is the magnitude of the signal at time tt = , related to that at 

ttt ∆+= ,  etc.  This implies that we are interested in the frequency description of 
the variation.  This is described by the auto-correlation of the processes or the power 
spectrum of the process. 
 
 If we are dealing with several processes simultaneously, we would further 
want to know their joint probability distributions and their cross-correlations and 
cross-spectra. 
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One-Dimensional Probability Distribution: 
 
 If “ x ” is a random continuous variable we can associate a probability to its 
magnitude being between any two levels; i.e. 1x  and dxx +1  as follows: 
 
 ( ) ≡dxxp 1  probability that dxxxx +≤≤ 11  where ( )1xp  is the probability 
density of the process at 1xx = . 
 
 
Properties of ( )xp : 
 
 ( ) 0≥xp  for all x ; 
 

 ( )∫
∞

∞−

= 1dxxp ; and 

 
 the probability that 21 xxx ≤≤  becomes 
 

 [ ] ( )∫=≤≤
2

1
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x

x

dxxpxxxP  

 
 A useful further concept is the cumulative distribution function ( )1xF  which 
represents the probability that 1xx ≤ .  Typically  
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 If we have a variable which only has discrete values; i.e. the age of students 
in years or numbers on a roulette wheel; the probability is described in terms of the 
probability mass function or the relative frequency.  Typically if x  only has discreet 
values of say Nxxxx .....,, 321 , the probability that 1xx = , i.e. [ ] ( )11 xrxxP ==  where 
( )xr  is the probability mass function.  The following properties of ( )xr  are apparent: 

 
 ( ) 10 ≤≤ xr  for all x  
 
 ( )∑ =

xall
xr 1 

 

 [ ] ( )∑
=

=

=≤≤
bx

ax
i

i

i

xrbxaP  

 
 
2-Dimensional Probability Distribution: 
 
 If we have two random variables, say x  and y , we can define a joint 
probability as follows: 
 
 ( ) ≡dydxyxpxy 11,  Probability that 
            dxxxx +≤≤ 11  and 
            dyyyy +≤≤ 11  
 
where ( )yxpxy ,  is the joint probability density function of the variables x  and y . 
 
 If x  and y  are independent 
 
 ( ) ( ) ( )ypxpyxp yxxy =,  
 
 By its definition ( ) 0, ≥yxpxy  for all x  and y  and 
 

 ( )∫ ∫
∞

∞−

∞

∞−

= 1, dydxyxpxy  

 
 For example, a two-dimensional normal probability distribution becomes; 
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where { } ( ) ( )( ) ( )
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where ( )( ) yxxy yyxx σσρ /−−= ; x  and y  are mean values of x  and y ; and 2

xσ  
and 2

yσ  are variances of x  and y . 
 
 If x  and y  are independent 
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Practical Estimates of the Prob. Distribution: 
 
 If we have at our disposal samples of a process, these can be sorted into a 
histogram. A histogram is a plot that gives the relative frequency of occurrence of 
the variable x  in different intervals of x .  Typically, if we have sorted M  values of 
the variable x  into a histogram and say iN  of these fall into the interval between ix  
and xxi ∆+  then, 
 

 
dxM

Ni  =  an estimate of the probability that 

      xxxx ii ∆+≤≤  
 
 This estimate becomes exact as ∞→M .  If our variable “ x ” is continuous 
and x∆  is small, i.e. dxx →∆ , an estimate of the probability density becomes 
 

 ( )
dxM

Nxp i
i =  

 
 Usually x∆  is finite and a good estimate of ( )xp  at the midpoint of the interval 
is, 
 

 
xM

Nxxxp i
i ∆

=⎟
⎠
⎞

⎜
⎝
⎛ ∆

+=
2

 

 
 

- Having obtained an estimate of ( )xp  one can sometimes fit ( )xp  by a 
mathematical model using least square fitting or maximum likelihood fitting 
etc.  Having done this one of course is very much interested in the 
“goodness of fit”. 
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- The theory of moments also provides a useful fitting procedure.  

Furthermore, from moments of the probability density function estimate, 
one can make very useful statements about the variable. 

 
 
Theory of Moments 
 
 If we know either ( )xp  for a continuous variable or ( )xr  for a discrete variable 
the following moments can be formed. 
 
 
Moments About the Origin: 
 

 thn  moment for a continuous variable x  becomes; 
 

 ( ) ( )∫
∞

∞−

= dxxpxx n
nµ  

 
 thn  moment for a discrete variable x  becomes; 

 
 ( ) ( )∑=

ixall
i

n
in xrxxµ  

 
 
Central Moments or Moments About the Mean: 
 

 thn  moment for a continuous variable x  becomes 
 

 ( ) ( )[ ] ( )∫
∞

∞−

−= dxxpxxx n
n 1µυ  

 
 thn  moment for a discreet variable x  becomes 

 
 ( ) ( )[ ] ( )∑ −=

ixall
i

n
in xrxxx 1µυ  

 
 The most important moments are the first moment about the origin, which 
represents the mean value, and the second moment about the mean which 
represents the variance. 
 
 If we have N  samples of the process x , i.e. Nxxx ....., 21 , estimates of the 
mean and variance are; 
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- The above two moments permit approximate predictions of the probability 

of exceeding particular values of x  if the process is approximately normal. 
 

- In any event use can be made of Chebyshev’s Inequality to make exact 
statements of the lower bound of probability; 

 

i.e. ( ) ( )[ ] ⎟
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SOME ASPECTS OF TIME VARYING RANDOM VARIABLES 
 
 

General Description: 
 
 Suppose we have an ensemble of N  sample functions of a random variable 
( )tx ; i.e. 

 

 
 
 
 In general, all statistical properties of the process may vary from sample to 
sample and as a result, the statistical properties are functions of time.  Typically, the 
ensemble mean at 1tt =  becomes 
 

 ( ) ( )∑
=∞→
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x tkt
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 Similarly the variance and covariance or correlation functions depend on “ t ”; 
i.e. 
  
Variance: 
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Covariance or Correlation Function 
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STATONARY PROCESS 
 
 A stationary process is one in which the statistical properties are invariant 
with time.  This obviously permits great simplifications. 
 
Strict Definition of Stationarity:  implies all statistical properties are invariant. 
 
Weak Stationarity (usually sufficient for practical application): 
Only requires that, 
 
 
 ( ) ( ) xxx tt µµµ === .....21 ; and 
 
if ( ) ( )τρρ += 1121 ,, tttt xx  where τ+= 12 tt , 
 
that ( ) ( ) ( )τρτρτρ xxx tttt ==+=+ .....,, 2211  
 
for all values of τ . 
 
 Note that the correlation function becomes independent of the origin of time.  
Also note that a weakly stationary process if Gaussian is also stationary in the strict 
sense. 
 
Ergodic Process 
 
 If the statistical properties of a single sample record averaged with time are 
identical to the ensemble statistics the process is called ergodic. 
 
 Namely, if for the thk  sample record we compute; 
 

 dtx
T

x k

T

T
k ∫

∞→
=

0

1
lim ; and 

 

 ( ) ( )[ ] ( )[ ]∫ −+−=
∞→

T
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T
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T

R
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The process is ergodic if 
 
   xk xx µ== ; and 
 
   ( ) ( ) ( )τρττ xxx RR

k
==  

 
 This implies that 
 
  Temporal Properties = Ensemble Properties 
 
 Ergodic processes in view of their tractability are very attractive and usually 
every attempt is made to make use of the ergodicity principle.  If the process is 
ergodic all information about the statistical properties can be obtained from a single 
record of the variable. 
 
 In reality of course we usually only have estimates of the statistical properties 
as T  is finite rather than ∞ . 
 
Auto-Correlation Functions 
 
 The auto-correlation function for an ergodic process ( )tx , as already defined, 
becomes; 
 

 ( ) ( )[ ] ( )[ ]∫ −+−=
∞→

T

T
x dtxtxxtx

T
R

0

1
lim ττ  

 
usually we only have an estimate of ( )τxR , i.e. ( )τxR̂  if T  is finite. 
 
 The auto-correlation function ( )τxR  represents the average correlation 
between the variable x  at time t  and the same variable at time τ+t . Here τ  is a 
separation in time, sometimes called the lag time.  Since the auto-correlation 
function is a measure of the correlation between the signal at different point in time, 
it provides information on the frequency content of the signal. 
 
 Frequently it is convenient to express the auto-correlation function in non-
dimensional form, namely 
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          ( ) 2/ xxR στ=  
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Properties of Auto-Correlation Functions 
 
 i) ( )τxR  is an even or symmetric function; namely 
 
   ( ) ( )ττ −= xx RR  
 
 ii) ( ) 2

xxR στ ≤  for all τ  
 

iii) If ( ) ( ) ( ) ( )τ
nyRtytytx .....21 ±±=  where 

 
nyyy ....., 21  are independent, then 

 
( ) ( ) ( ) ( )ττττ

nyyyx RRRR .....
21

++=  
 
Measurements of Auto-Correlation 
 

i) Analogue methods 
 

ii) Digital method:  if we sample a process ( )tx  at a sampling rate of 
τ∆/1  apart in time, then an estimate of xR  becomes; 

 

( ) ( ) ( ) ( )∑
−

=
+ −−

−
=∆

kN

i
kii

x
x xxxx

kN
kR

1
2

1
σ

τ  

 
where Mk .....3,2,1,0=  
 

 ( )22

1
11;1 xxi

N
x

N
x i

N

x

N

i
−=== ∑∑

=

σ ; and 

 
 ≡M  maximum lag number 
 
 ≡∆= ττ Mmax  maximum lag time. 

Power Spectra: 
 
 The auto-correlation function, although useful in providing information on the 
frequency content, is of greater direct use if transformed to the power spectrum 
form. 
 
 There exists a Fourier transform pair; 
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 ( ) ( ) ττ
π

σ
ω ωτ deRG i

x
x

x
−

∞

∞−
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 ( ) ( ) ωω
σ

τ ωτ deGR i
x

x
x ∫

∞

∞−

= 2
1  

 
where “ω ” is the circular frequency and ( )ωxG  is the two-sided power spectral 
density of the process ( )tx . 
 
 ( )ωxG  can be expressed in terms of a one-sided power spectral density 

( )nxφ .  Since ( )τxR  is a real even function the above general Fourier transform pair 
can be replaced by a real cosine transform pair as follows: 
 
    
 
 
 
 
 
 
 
 
 
where n  is the frequency in cps. 
 
 The power spectral density ( )nxφ  is a measure of the proportion of the total 
energy or the total variance of the process at frequency “ n ” per unit frequency.  
Namely 
 
 ( )dnnx 1φ  =  contribution to the variance at frequencies n  
        where dnnnn +≤≤ 11  
 
 
 
Consequently 
 

 ( ) ( ) ( )dxxpxxdnn xx
o

22 −== ∫∫
∞

∞−

∞

φφ  

  
The above equation forms the link between the descriptions of the random variable 
in the amplitude and frequency domains. 
 
 

( ) ( ) ττπτσφ dnRn
o

xx 2cos4 2 ∫
∞

=

 

( ) ( ) ττπφ
σ

τ dnnR
ox

x 2cos1
2 ∫

∞

=  
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(n)φx

log n (cps)

x(n)φ

n (cps)

area = x²σ

n
σ ²x area = 

 
 
 
  
 
 
 
 
 
 
 
 
Another useful form of the power spectrum is 
 
 
 
 

       ( ) ( ) 12 =∫
∞

nndnn

x

x

o

l
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Typical Example: 
 
 If a mass, spring, dashpot single degree of freedom oscillator is subjected to 
a random force ( )tF  having a power spectral density of ( )nFφ , the power spectrum 
of the response “ x ” to this excitation becomes 
 

 ( ) ( ) ( )nn
K

n Fmx φχφ 2
2

1
=  

 
where  ( ) ≡nmχ  mechanical admittance or 
       mechanical magnification 
 

  

2/1

2

2
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2

2

2
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⎥
⎥
⎥
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⎜⎜
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oo n
n

n
n ζ

 

 
 

( ) ( ) ( )dnnn
K

dnn Fm
o

x
o

x φχφσ 2
2

2 1
∫∫
∞∞

==  

 

where ≡=
M
Kno π2

1  undamped natural 

      frequency 
 
 In contrast if the excitation ( ) 12sin nAtF π=  (i.e. a sine wave at frequency 1n ), 
the variance of the response would be 
 

 ( ) ( ) 22
12

2
12

2
2 1

2
1

Fmmx n
K

n
K
A σχχσ ==  

 
 Namely all energy of the response is at the frequency of the excitation “ 1n ”. 
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φ

Measurements of Power Spectra 
 

1. Analogue Methods:  In these methods the signal if passed through a 
narrow band pass filter and the variance of the signal associated with 
different frequency bands is measured.  It is important in such 
measurements to choose a sufficiently small band width of the filter to 
permit adequate resolution in the frequency domain. 

 
2. Digital Methods:   

 
i) measure the auto-correlation function and transform mathematically 

to obtain the power spectrum. 
 
ii) transform the data, i.e. ( )tx , to obtain an amplitude spectral density 

which when squared becomes a power spectral density. 
 
iii) use of a “FFT” (Fast Fourier Transform) algorithm to do ii) more 

efficiently.   
 
 
Calculation of ( )nφ  from ( )τR : 
 
 If we are planning to compute ( )nφ  from ( )τR  there are a number of 
considerations for such calculation.  These are as follows: 
 

i) The choice of τ∆ , i.e. the spacing in time of the sampled data, has to 
be chosen sufficiently small to provide information at high frequencies. 
 

For example if the sampling frequency is 
τ∆

=
1

sn  we can only obtain 

undistorted information on ( )nφ  up to the aliasing frequency an , where 

τ∆
==

2
1

2
s

a
nn  . Energy at frequencies higher than an  will erroneously 

appear at lower frequencies as shown below: 
 
 
    Energy at frequencies higher than  

Will be “folded” or will appear in the range 
ann ≤≤0  as shown 
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Solutions: a) Choose as nn 2=  sufficiently high to minimize 
distortion of ( )nφ  estimates. 

 
b) Pass the signal through a low pass filter to 

eliminate the contribution to the power at  
ann > . 

 
ii) The choice of the maximum lag ττ ∆= Mmax  limits the information at 

low frequencies and also determines the resolution of the ( )nφ  
estimate: 

 

practical minimum frequency = 
max2
1
τ

 

 

resolution ≡  effective band width = eb≈
max

1
τ

. 

 
Consequently, if we have computed ( )τR  at τ  values of τ∆k  where 

Mk .....,2,1,0= , we can obtain estimates of ( )nφ  for the following 
frequencies: 
  

 
τττττ ∆

==
2

1
2

....,
2

....,
2

2,
2

1
maxmaxmaxmax

Mkn  

  ↑             ↑  
     minimum       maximum 
    frequency      frequency 

iii) The total number of data points N  and maxτ  also provide information 
on the statistical reliability of the ( )nφ  estimate 

 

- Coefficient of Variation =  
Tbe

1  , where T  = length of record 

   of ( )nφ  
 

  ∴  Coeff. of Variation =  
M
N

N
M

2
1

1
=

∆
∆

τ
τ

 

 
- Confidence limits for ( )nφ  estimates can be obtained from those of 

a 2χ  distribution with k  degrees of freedom, where 
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NTTbk e

222
max

===
τ

 

 
  Reasonable estimates of ( )nφ .  Theoretically we have; 
 

   ( ) ( )∫
∞

=
o

x nRn τπτσφ 2cos4 2  

 
If we have an ( )τR  function defined for max0 ττ ≤≤ , an estimate of ( )nφ  becomes 
 

  ( ) ( )∫=
max

2cos4ˆ 2
τ

τπτσφ
o

x nRn  

 
where the integration is carried out numerically.  Since maxτ  is finite, the estimate 
obtained is not very good. In fact, if 1φ  is the true spectral density the above estimate 
will be identical to 
 

  ( ) ( )∫
∞

−=
o

dnn η
πη

τπη
ηφφ max

1
2sin4ˆ  

 

where η  is a dummy variable of integration and 
πη

τπη max2sin   is referred to as a 

“spectral window”. 
 
An improved “smoothed” estimate of ( )nφ  is obtained if ( )τR  is forced to zero at 

maxττ = . In other words, the measured )(τR  is multiplied by a “lag window”, called 
)(τD  and then transformed. Several such windows are used in practice. Typical lag 

windows are: 
 
 
Bartlett Window:  
 

max
1 1)(

τ
τ

τ −=D ; maxmax τττ ≤≤−  and = 0 elsewhere 

Hanning Window:  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

max
2 cos1

2
1)(

τ
πττD ; maxmax τττ ≤≤−  and = 0 elsewhere 
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Hamming Window:  
 

max
3 cos46.054.0)(

τ
πττ +=D ; maxmax τττ ≤≤−  and = 0 elsewhere 

 
Using the above lag windows is only a mathematical procedure to improve the )(nφ  
estimates. 
 
Using a lag window, we would numerically integrate the following: 
 

∫=
max

0

2 2cos)()(4)(ˆ
τ

ττπττσφ dnRDn ix  


